• Title/Summary/Keyword: The long-term durability

Search Result 506, Processing Time 0.024 seconds

Manually applied to the social infrastructure polyurea waterproofing materials, methods based on the deterioration of conditions attached Performance Evaluation and Analysis (사회기반시설에 적용되는 수작업형 폴리우레아 방수·방식재료의 열화조건에 따른 부착성능평가 및 분석에 관한 연구)

  • Choi, Eun-Kyu;Kim, Yun-Ho;Lee, Hye-Ryung;Kim, Su-Ryon;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.41-42
    • /
    • 2012
  • High temperature / high pressure spray equipment using a conventional method, unlike spray polyurea adjustable pot life and yellowing caused by UV light and chemicals do not occur, or discoloration of Self-Leveling Type of rugged hand-polyurea resin for technology development is underway. This new concept of polyurea resin roller, brush, airless spray, and they installed easily using the unfamiliar labor, and curing time of approximately four hours to gain control of the glass because it is Pot. Construction, but does not like the spray polyurea resin, compared to the existing degradation of the adhesion strength is concerned. In this study, Self-Leveling Type Manual of polyurea resin adhesion strength of target deterioration Let's minimize problems by reviewing existing domestic and infrastructure long-term durability for long life of the facility is to obtain.

  • PDF

Fiber Optic Smart Monitoring of Railway Structures (광섬유센서를 이용한 철도구조물의 모니터링)

  • Kim, Ki-Soo;Cho, Sung-Gyu;Kim, Myeong-Se;Kim, Hak-Yeon;Seo, Ki-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.754-760
    • /
    • 2008
  • For monitoring of railway structures, optical fiber sensors are very convenient. The fiber sensors are very small and do not disturb the structural properties. They also have several merits such as electro-magnetic immunity, long signal transmission, good accuracy and multiplicity of one sensor line. Strain measurement technologies with fiber optic sensors have been investigated as a part of smart structure. In this paper, we investigated the possibilities of fiber optic sensor application to the monitoring of railway structures. We expect that the fiber optic sensors have much less noises than electrical strain gauges because of electro-magnetic immunity while railways operate electric power of 22000 volts. Fiber optic sensors showed good durability and long term stability for continuous monitoring of the railway structures as well as good response to the structural behaviors during construction.

  • PDF

Durability and Strength of Ternary Blended Concrete Using High Early Strength Cement (조강(早彈)시멘트를 사용(使用)한 3성분계(性分系) 콘크리트의 강도(彈度) 및 내구특성(耐久特性))

  • Hong, Chang-Woo;Jeong, Won-Kyong
    • Resources Recycling
    • /
    • v.19 no.5
    • /
    • pp.50-57
    • /
    • 2010
  • Ternary blended concrete(TBC), which contains both fly ash and granulated blast furnace slag, has an initial cost effective and is environment friendly. Furthermore, it has a lot of technical advantages such as the improvement of long term compressive strength, high workability, and the reduction of hydration heat. However, as the use and study on the performance of ternary blended concrete is limited, it is low short term compressive strength. This study was performed to evaluate the characteristics which are a long and short term compressive strengths, permeability and chemical attacks resistance of hardened high early concrete containing slag powder and fly-ash using high early strength cement(HE-TBC). Replacement rate of FA is fixed on 10% and replacement rate of slag powder are 0%, 10%, 20% and 30%. The test results showed that compressive and flexural strength of HE-TBC increased as the slag contents increased from 0% to 30% at the short term of curing. The permeability resistance of HE-TBC(fly ash 10%, blast 30%) was extremely good at the short and long terms. However, high early strength ternary blended concrete had weak on carbonation of chemical attack.

Hemodynamic study of Pneumatic Artificial Heart Implanted in Calves (송아지에 이식한 공기구동형 인공심장의 혈역학적 연구)

  • 박표원
    • Journal of Chest Surgery
    • /
    • v.23 no.3
    • /
    • pp.438-451
    • /
    • 1990
  • Pneumatic total artificial heart[TAH] has been clinically applied for the purpose of permanent or temporary use followed by cardiac transplantation in the patients with end stage heart diseases. In spite of the good durability of the pneumatic TAH, thrombus formation, bleeding and infection resulted in death. The Tomasu heart, which is a type of pneumatic TAH, was used in this study. This model is a modified Jarvik heart and consists of atrial cuffs, outflow vascular grafts and thin-layer seamless diaphragm type of ventricles. Cardiac outputs of the left artificial heart were measured by Donovan`s mock circulation under variable conditions of driving parameters, and an experimental artificial heart implantation was performed in 4 calves to observe the changes of hemodynamic parameters in early postoperative period and hematologic and bio-chemical changes in a long-term survival case. In the mock circulation test, cardiac output of the heart was increased with the increase of the left atrial pressure and left driving pressure. Maximum cardiac output was obtained at the heart rate of 120 to 130/min and percent systole of 40 to 45Zo under the condition of a constant left driving pressure of 180mmHg and left atrial pressure of 10mmHg. During the first 24 hours of TAH pumping, driving pressure ranged from 178$\pm$5mmHg to 187$\pm$8mmHg for the left heart and from 58$\pm$6mmHg to 78$\pm$28mmHg for the right heart. The Mean arterial pressure significantly increased between 2 and 8 hours after the start of pumping. The survival time ranged from 27 hours to 46 days. The causes of death were respiratory failure in 2 cases, mechanical valve failure in one, and left ventricular outflow obstruction due to thrombus in a 46-day survival case. This study demonstrated that Tomasu artificial heart operated effectively during the first 24 hours of artificial heart pumping, but thrombus formation around the valve holding area was the main problem in long-term survival case.

  • PDF

Performance indicator of the atmospheric corrosion monitor and concrete corrosion sensors in Kuwait field research station

  • Husain, A.;Al-Bahar, Suad Kh.;Salam, Safaa A. Abdul
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.981-994
    • /
    • 2016
  • Two field research stations based upon atmospheric corrosivity monitoring combined with reinforced concrete corrosion rate sensors have been established in Kuwait. This was established for the purpose of remote monitoring of building materials performance for concrete under Kuwait atmospheric environment. The two field research sites for concrete have been based upon an outcome from a research investigation intended for monitoring the atmospheric corrosivity from weathering station distributed in eight areas, and in different regions in Kuwait. Data on corrosivity measurements are essential for the development of specification of an optimized corrosion resistance system for reinforced concrete manufactured products. This study aims to optimize, characterize, and utilize long-term concrete structural health monitoring through on line corrosion measurement and to determine the feasibility and viability of the integrated anode ladder corrosion sensors embedded in concrete. The atmospheric corrosivity categories supported with GSM remote data acquisition system from eight corrosion monitoring stations at different regions in Kuwait are being classified according to standard ISO 9223. The two nominated field sites where based upon time of wetness and bimetallic corrosion rate from atmospheric data where metals and rebar's concrete are likely to be used. Eight concrete blocks with embeddable anodic ladder corrosion sensors were placed in the atmospheric zone adjacent to the sea shore at KISR site. The anodic ladder corrosion rate sensors for concrete were installed to provide an early warning system on prediction of the corrosion propagation and on developing new insights on the long-term durability performance and repair of concrete structures to lower labor cost. The results show the atmospheric corrosivity data of the environment and the feasibility of data retrieval of the corrosion potential of concrete from the embeddable sets of anodic ladder corrosion sensors.

Quality of Recycled Fine Aggregate using Neutral Reaction with Sulfuric Acid and Low Speed Wet Abrader

  • Kim, Ha-Seog;Lee, Kyung-Hyun;Kim, Jin-Man
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.5
    • /
    • pp.490-502
    • /
    • 2012
  • The use of recycled aggregate, even for low-performance concrete, has been very limited because recycled aggregate, which contains a large amount of old mortar, is very low in quality. To produce a high-quality recycled aggregate, removing the paste that adheres to the recycled aggregate is very important. We have conducted research on a complex abrasion method, which removes the component of cement paste from recycled fine aggregate by using both a low-speed wet abrasion crusher as a mechanical process and neutralization as chemical processes, and well as research on the optimal manufacturing condition of recycled fine aggregates. Subsequently, we evaluated the quality of recycled fine aggregate manufactured using these methods, and tested the specimen made by this aggregate. As a result, it was found that recycled fine aggregates produced by considering the aforementioned optimal abrasion condition with the use of sulfuric acid as reactant showed excellent quality, recording a dry density of 2.4 and an absorption ratio of 2.94. Furthermore, it was discovered that gypsum, which is a reaction product occurring in the process, did not significantly affect the quality of aggregates. Furthermore, the test of mortar using this aggregate, when gypsum was included as a reaction product, showed no obvious retarding effect. However, the test sample containing gypsum recorded a long-term strength of 25.7MPa, whereas the test sample that did not contain gypsum posted a long-term strength of 29.4MPa. Thus, it is thought to be necessary to conduct additional research into the soundness and durability because it showed a clear reduction of strength.

Development of the Maskdance Dress Design (탈춤축제의상개발에 관한 연구)

  • Kim, Hee-Sook
    • Fashion & Textile Research Journal
    • /
    • v.12 no.2
    • /
    • pp.156-161
    • /
    • 2010
  • To improve the standard of living of its citizens, local festivals is located in one axis of the new culture. These symptoms shows that there is increasing awareness of traditional culture such as Hanryu. The purpose of this study is to develope the presentative Dress of Andong International Maskdance Festival to stimulate curiosity and participate easily. 24 villages in Andong were present to represent appropriate Dress of Maskdance Festival which have been announced through the fashion show. The characteristics of the maskdance dress which presented in this study has the purpose of making the specialties of each village to tourism resources. Characteristics of the maskdance dress which designed to blend on the mask was as following. (1) Maskdance dress should shown well and must have strong durability of strenuous exercise in maskdance (2) Maskdance dress should be able to get the sympathy of the spectators. (3) Maskdance dress should be sympathetic as modern costumes. (4) Aesthetics as custumes and requirements as product must be met. (5) Acceptance of Andong region's traditional beauty is required. (6) Maskdance dress is likely to require long-term use. (7) Maskdance dress must be able to accommodate a variety of body conditions. Through customer satisfaction survey of 158 spectators and 48 members of fashion show, the relevance of masks and costumes, aesthetic and motility of costumes, commercialization potential, especially costume' motility and functional fitness of clothing sizes was highly evaluated. So maskdance dress or stage costumes as long-term development is likely to be considered. And continued research is needed.

Electrochemical oxidation of sodium dodecylbenzenesulfonate in Pt anodes with Y2O3 particles

  • Jung-Hoon Choi;Byeonggwan Lee;Ki-Rak Lee;Hyun Woo Kang;Hyeon Jin Eom;Seong-Sik Shin;Ga-Yeong Kim;Geun-Il Park;Hwan-Seo Park
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4441-4448
    • /
    • 2022
  • The electrochemical oxidation process has been widely studied in the field of wastewater treatment for the decomposition of organic materials through oxidation using ·OH generated on the anode. Pt anode electrodes with high durability and long-term operability have a low oxygen evolution potential, making them unsuitable for electrochemical oxidation processes. Therefore, to apply Pt electrodes that are suitable for long-term operation and large-scale processes, it is necessary to develop a new method for improving the decomposition rate of organic materials. This study introduces a method to improve the decomposition rate of organic materials when using a Pt anode electrode in the electrochemical oxidation process for the treatment of organic decontamination liquid waste. Electrochemical decomposition tests were performed using sodium dodecylbenzenesulfonate (SDBS) as a representative organic material and a Pt mesh as the anode electrode. Y2O3 particles were introduced into the electrolytic cell to improve the decomposition rate. The decomposition rate significantly improved from 21% to 99%, and the current efficiency also improved. These results can be applied to the electrochemical oxidation process without additional system modification to enhance the decomposition rate and current efficiency.

Dynamic Behavior Analysis of PSC Train Bridge Friction Bearings for Considering Next-generation High-speed Train (차세대 고속철의 증속을 고려한 PSC 철도교 마찰 교량받침의 동적 거동 해석)

  • Soon-Taek Oh;Seong-Tae Yi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.39-46
    • /
    • 2023
  • In this study, the dynamic behavior of friction bearings of PSC (Pre-Stressed Concrete) box train continuous bridge was numerically analyzed at 10 km/h intervals up to 600 km/h according to the increasing speed of the next-generation high-speed train. A frame model was generated targeting the 40-meter single-span and two-span continuous PSC box bridges in the Gyeongbu High-Speed Railway section. The interaction forces including the inertial mass vehicle model with 38 degrees of freedom and the irregularities of the bridge and track were considered. It was calculated the longitudinal displacement, cumulative sliding distance and displacement speed of the bridge bearings at each running speed so that compared with the dynamic behavior trend analysis of the bridge. In addition, long-term friction test standards were applied to evaluate the durability of friction plates.

Angiographic Results of Wide-Necked Intracranial Aneurysms Treated with Coil Embolization : A Single Center Experience

  • Song, Joon Ho;Chang, In Bok;Ahn, Jun Hyong;Kim, Ji Hee;Oh, Jae Keun;Cho, Byung Moon
    • Journal of Korean Neurosurgical Society
    • /
    • v.57 no.4
    • /
    • pp.250-257
    • /
    • 2015
  • Objective : Endovascular treatment of wide-necked intracranial aneurysms is a challenge and the durability and the safety of these treated aneurysms remain unknown. The aim of this study was to evaluate the clinical and long-term angiographic results of wide-necked intracranial aneurysms treated with coil embolization. Methods : Between January 2002 and December 2012, 53 wide-necked aneurysms treated with coil embolization were selected. Forty were female, and 13 were male. Twenty eight (52.8%) were ruptured aneurysms, and 25 (47.2%) were unruptured aneurysms. The patents' medical and radiological records were reviewed retrospectively. Results : Of the 53 aneurysms, coiling alone was employed in 45 (84.9%) and stent-assisted coiling was done in 8 (15.1%). The initial angiographic results revealed Raymond class 1 (complete occlusion) in 30 (56.6%) cases, Raymond class 2 (residual neck) in 18 (34.0%) cases, and Raymond class 3 (residual sac) in 5 (9.4%) cases. The mean angiographic follow-up period was 37.9 months (12-120 months). At the last angiographies, Raymond class 1 was seen in 26 (49.1%) cases, Raymond class 2 in 16 (30.2%), and Raymond class 3 in 11 (20.8%). Angiographic recurrence occurred in 22 (41.5%) patients, with minor recurrence in 7 (13.2%) cases and major recurrence in 15 (28.3%). Retreatment was performed in 8 cases (15.1%). A suboptimal result on the initial angiography was a significant predictor of recurrence in this study (p=0.03). Conclusion : The predictor of recurrence in wide-necked aneurysms is a suboptimal result on the initial angiography. Long-term angiographic follow-up is recommended in wide-necked aneurysms.