• Title/Summary/Keyword: The kuroshio

Search Result 194, Processing Time 0.025 seconds

Infouences of the Asian Monsoon and the Kuroshio on the Sea Surface Temperatures in the Yellow, the Japan and the East China Seas (아시아 季節風과 쿠로시오가 黃海, 東海 및 東支那海의 表面水溫에 미치는 影響)

  • 강옥균
    • 한국해양학회지
    • /
    • v.20 no.2
    • /
    • pp.1-9
    • /
    • 1985
  • A simple analytic model of the sea surface temperature(SST) is developed in order to understand the effects of the Asian monsoon and the Kuroshio on the annual variations of SST by the Asian monsoon is almost in phase with the incoming radiation whereas that by the Kuroshio is out of phase with the incoming radiation. In the Yellow Sea, due to the heat advection by the Asian monsoon, the yearly mean SST is low and the annual range of SST exceeds 20$^{\circ}C$. The annual range of SST in the northwestern Japan Sea is large because of the combined effects of the Asian monsoon and the cold water advection. In the Kuroshio and in the Tsushima Current regions, the annual range of SST is small and the mean SST is high due to the heat advection by warm currents.

Interleaving Phenomena of the North Pacific Intermediate Water in the Offshore Area of the Kuroshio

  • Yang, Sung-Kee;Lee, Byung-Gul
    • Journal of Environmental Science International
    • /
    • v.12 no.5
    • /
    • pp.521-527
    • /
    • 2003
  • To study the intruded phenomena of North Pacific Ocean around Boso peninsular, water property distribution in the adjacent seas to Japan is studied using the hydrographic data obtained by Japan Maritime Agency and Japan Fisheries Agency from 1973 to 1996, The scattering of water type in T-5 diagram is relatively small in the Kuroshio Region. Both the envelopes of saline side and of fresh side of the scattered data points shifts gradually from saline side to fresh side as the observation Line moves from southwest to northeast. In mixed water region, the scattering of water type increases rapidly as the observation line moves north; the envelope of fresh cold side moves towards fresh cold side much faster than that of saline side. This suggests that the water does not advect along the salinity minimum layer, but the salinity minimum layer can be understood as a boundary of two different waters aligned vertically, We defined the typical water masses as the Oyashio Water and the Kuroshio Water. The water mass below the salinity minimum layer may be created by isopycnal mixing of these two water masses with a fixed mixing rate. While the water mass above the salinity minimum cannot be created simply by isopycnal mixing. The salinity minimum layer may be eroded from upper side due to active minxing processes in the surface layer, while the water of the salinity minimum layer moves gradually southward. This appears to give an explanation why the thermosteric anomaly value at salinity minimun decereases towards south.

Effects of Seasonal Wind Stress on the Formation of the Tsushima Warm Current (대마난류 형성에 미치는 계절별 바람의 영향)

  • 남수용;석문식;방인권;박필성
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.4
    • /
    • pp.364-374
    • /
    • 1994
  • The separation mechanism of the Tsushima Warm Current and the effects of seasonal wind stress on the separation position are studied by use of a barotropic numerical model. The grid spacing of 0.25$^{\circ}$ both in latitude and longitude is used in the model, and Hellerman and Rosenstein's wind (1983) is applied to the sea surface as seasonal wind stress. According to the model results, during winter seasons (from October to March) when northly wind is prevailing, the Tsushima Warm Current is formed by direct separation from the Kuroshio on the continental slope southwest of Kyushu. On the other hand, during summer seasons (from April to September), the Taiwan Current that flows through the Taiwan Strait seems to be the origin of the Tsushima Warm Current. The Kuroshio reaches its maximum transport during winter seasons, and the minimum during summer. The transport of the Taiwan Current shows a phase lag of about 160$^{\circ}$ relative to the Kuroshio. The transport variation of the Tsushima Warm Current agrees with that of the Kuroshio when the former is shifted by 120$^{\circ}$(about 4 months).

  • PDF

Impact of Reconstructed Gridded Product of Global Wind/Wind-stress Field derived by Satellite Scatterometer Data

  • Koyama, Makoto;Kutsuwada, Kunio;Morimoto, Naoki
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.309-312
    • /
    • 2008
  • The advent of high resolution products of surface wind and temperature derived by satellite data has permitted us to investigate ocean and atmosphere interaction studies in detail. Especially the Kuroshio extension region of the western North Pacific is considered to be a key area for such studies. We have constructed gridded products of surface wind/wind stress over the world ocean using satellite scatterometer (Qscat/SeaWinds), available as the Japanese Ocean Flux data sets with Use of Remote sensing Observation (J-OFURO). Using new data based on improved algorithm which have been recently delivered, we are reconstructing gridded product with higher spatial resolution. Intercomparison of this product with the previous one reveals that there are some discrepancies between them in short-period and high wind-speed ranges especially in the westerly wind region. The products are validated by not only comparisons with in-situ measurement data by mooring buoys such as TAO/TRITON in the tropical Pacific and the Kuroshio Extension Observation (KEO) buoys, but also intercomparison with numerical weather prediction model (NWPM) products (the NRA-1 and 2). Our products have much smaller mean difference in the study areas than the NWPM ones, meaning higher reliability compared with the NWPM products. Using the high resolution products together with sea surface temperature (SST) data, we examine a new type of relationship between the lower atmosphere and upper ocean in the Kuroshio Extension region. It is suggested that the spatial relation between the wind speed and SST depends upon, more or less, the surrounding oceanic condition.

  • PDF

ANALYSIS AND INTERCOMPARISON OF VARIOUS GLOBAL EVAPORATION PRODUCTS

  • School of Marine Science and Technology, Tokai University, Tsuyoshi Watabe;School of Marine Science and Technology, Tokai University, Masahisa Kubota
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.285-288
    • /
    • 2008
  • We analyzed evaporation data in the Japanese Ocean Flux Data Sets with Use of Remote Sensing Observations (J-OFURO) Ver.2. There exists huge evaporation in Gulf Stream, Kuroshio Extension, the ocean dessert and the southern part of the Indian Ocean. The temporal variation of evaporation is overwhelmingly large, of which the standard deviation is more than 120(mm), in the Kuroshio Extension region. Also, the result of harmonic analysis gives that this large variation is closely related to annual variation. In addition, the first EOF mode shows long-term variation showing the maximum amplitude between 1992 and 1994 and remarkable decrease after 1994, and large amplitude in the equatorial region and northeast of Australia. The second and third modes were strongly influenced by El Nino. Moreover, we compared J-OFURO2 evaporation product with other products. We used six kinds of data sets (HOAPS3 and GSSTF2 of satellite data, NRA1, NRA2, ERA40 and JRA25 of reanalysis data) for comparison. Most products show underestimation in the most regions, in particular, in the northern North Pacific, mid-latitudes of the eastern South Pacific, and high-latitudes of the South Pacific compared with J-OFUR02. On the other hand, JRA25 and NRA2 show large overestimation in the equatorial regions. RMS difference between NRA2 and J-OFURO2 in the Kuroshio Extension was significantly large, more than 120(mm).

  • PDF

Reconstruction and Validation of Gridded Product of Wind/Wind-stress derived by Satellite Scatterometer Data over the World Ocean and its Impact for Air-Sea Interaction Study

  • Kutsuwada, Kunio;Koyama, Makoto;Morimoto, Naoki
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.33-36
    • /
    • 2007
  • We have persistently constructed gridded products of surface wind/wind stress over the world ocean using satellite scatterometer (ERS and Qscat). They are available for users as the Japanese Ocean Flux data sets with Use of Remote sensing Observation (J-OFURO) data together with heat flux components. Recently, a new version data of the Qscat/SeaWinds based on improved algorithm for rain flag and high wind-speed range have been delivered, and allowed us to reconstruct gridded product with higher spatial resolution. These products are validated by comparisons with in-situ measurement data by mooring buoys such as TAO/TRITON, NDBC and the Kuroshio Extension Observation (KEO) buoys, together with numerical weather prediction model products such as the NCEP-1 and 2. Results reveal that the new product has almost the same magnitude in mean difference as the previous version of Qscat product and much smaller than the NCEP-1 and 2. On the other hand, it is slightly larger root-mean-square (RMS) difference than the previous one and NCEPs for the comparison using the KEO buoy data. This may be due to the deficit of high wind speed data in the buoy measurement. The high resolution product, together with sea surface temperature (SST) one, is used to examine a new type of relationship between the lower atmosphere and upper ocean in the Kuroshio Extension region.

  • PDF

FINER-SCALE SST FRONT OF THE SOUTHERN ECS IN WINTERTIME FROM SATELLITE AND SHIPBOARD DATA

  • Chang, Yi;Shimada, Theruhisa;Sakaida, Futoki;Kawamura, Hiroshi;Chan, Jui-Wen;Liu, Dong-Chan;Lee, Ming-An
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.740-743
    • /
    • 2006
  • We identify two distinct finer-scale frontal bands: 'Mainland China Coastal Front' (MCCF) and 'Kuroshio Front' (KF). The MCCF is along the 50-m isobath with large temperature gradient. The front is a boundary between the Mainland China Coastal Current and the offshore shelf waters. On the other hand, the KF is extending from the northeastern coast of Taiwan toward the northeast and into the shelf of south ECS. It forms a broad semicircle-shape and curving along 100-m isobath, it also deviates from eastward at around 26.5N-122E and leaves the shelf of ECS. This front should be the boundary between the Kuroshio water and the other shelf waters.

  • PDF

Sea Level Variations in the East Asian Marginal Seas by Topex/Poseidon Altimeter Data (Topex/Poseidon 고도계자료를 이용한 동북아시아 연변해역의 해수면 변화 연구)

  • Yoon, Hong-Joo;Kim, Sangwoo;Lee, Moon-Ock;Park, Il-Heum
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.300-303
    • /
    • 2001
  • The first 7 years of altimeter data from the TOPEX/POSEIDON (T/P) were analyzed to study the surface circulation and its variability in the East Asian Marginal Seas. Long term averaged T/P sea level time series data where compared with in situ sea level measurements from a float-operated type tide gauge around of south Korea and Japan. T/P data are a large contaminated by 60-day tidal aliasing effect, very near the alias periods of M2 and S2. When this 60-day effect is removed, the data agree well with the tide gauge data with 4.6 cm averaged RMS difference. The T/P derived sea level variability reveals clearly the well-known, strong current-topography such as Kuroshio. The T/P mean sea level of North Pacific (NP) was higher than Yellow Sea (YS) and East Sea (ES). The T/P sea level valibility, with strong eddy and meandaring, was the largest in eastern part of Japan and this variability was mainly due to the influence of bottom topography in Kuroshio Extention area.

  • PDF

Seasonal Distribution of Oceanic Conditions and Water Mass in the Korea Strait and the East China Sea: Correction of Atmosphere Cooling Effect (대한해협과 동중국해의 해황과 수괴의 계절분포: 대기에 의한 냉각효과 보정)

  • Shin, Hong-Ryeol;Hwang, Sang-Chul;Kwak, Chong-Heum
    • Journal of the Korean earth science society
    • /
    • v.22 no.1
    • /
    • pp.47-64
    • /
    • 2001
  • Water mass classification was conducted using the data of 1985 and 1986 in the East China Sea and the Korea Strait. Kuroshio water (type K) and mixed water (type I) were broadly distributed at 50 m depth in winter and spring, and mixed waters (type I to IV) were distributed in summer and autumn. At 100 m depth of the East China Sea, and mixed water (type I) was broadly distributed in winter and spring, and mixed waters (type I to III) were in summer, and type I was in autumn. Water mass in summer is the most influenced from the Chinese coastal water. In the Korea Strait, the Kuroshio water (type K) was the main water mass in winter and spring, and mixed waters (type I to IV) were in summer and autumn. If temperatures are corrected to remove the cooling effect from the atmosphere, the Kuroshiowater region was diminished, however the mixed water region was expanded in winter and spring. This shows that although the Kuroshio water appears to be a main water mass of the East China Sea and the Korea Strait in winter andspring, in reality the mixed water (type I) which is slightly changed from the Kuroshio water (type K) widely distributed. The tongue-shaped distribution of low density surface water indicates that the water mixed with the Chinese coastal water flows to the Korea Strait and the Okinawa in summer.

  • PDF

A Two-and-a-half-layer Model of the Circulation of South China Sea

  • Ou, Wang
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.7-9
    • /
    • 1996
  • A simple two-and -half-layer model is used to study the circulation of South China Sea( SCS ). The model is coming from the reduced gravity model of Hurbult and Thompson, with the assumption of rigid surface. It shows there is no distinct branch of the Kuroshio into the SCS. Both the upper and lower pycnocline height anomaly show that the main feature of the circulation of SCS is a cyclone, which is generated by the transportion of the vorticity from the Kuroshio. Aftr generated, the cyclone moves westward due to the beta effect, then dissipates near the west boundary due to the viscosity. After an old one dissipates, a new one appears again. The life cycle of the cyclone is about 160 days.

  • PDF