• Title/Summary/Keyword: The influence of railroad

Search Result 206, Processing Time 0.021 seconds

A Study on the Development of Brake Control Unit for Urban Transit (도시철도차량의 제동제어장치 개발에 관한 연구)

  • Lee, Woo-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1244-1247
    • /
    • 2002
  • The blending brake is mixed brake system which is operated by electrical and mechanical brake simultaneously. Most of urban transit system is used with blending brake unit. In order to train is align at the stopping position. The blending brake shall be presicely operated to the train. Many parameters are influence on the train when train is stopped on presicion position by blending brake. It is considered such parameters as decceleration, variable load, jerk, friction cofficient, etc. Therefore, This paper consider the parameter and describes the blending control for standard EMU. The control algorithm of it is proposed and simulation of it carried out by using MATLAB. Also Electronic control unit is manufactured with micro procesor which is configured fot blending control and is verified by performance test.

  • PDF

The Properties of Electric Conduction and Space Charge of crosslinked Polyethylene film (가교폴리에틸렌 필름의 전기전도 및 공간전하특성)

  • Cho, Kyung-Soon;Lee, Soo-Won;Kim, Wang-Kon;Hong, Nung-Pyo;Hong, Jin-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1330-1332
    • /
    • 1994
  • In order to investigate the properties of electrical conduction and space charge in crosslinked polyethylene film, we were observed the specimen with 200[${\mu}m$] thickness. The electrical conduction properties of specimen were measured temperature range from 30 to $110[^{\circ}C] $as well as $10^{-2}$ - 1 [MV/cm] of electric field. The investigations on influence of space charge were carried out at room temperature and $60 [^{\circ}C]$.

  • PDF

Tribological Characteristics of proposed brake disk for Tilting train (틸팅차량용 제동 디스크의 트라이볼로지 특성 연구)

  • Park Kyung-sik;Kang Sung-woong;Cho Jeong-whan;Lee Hisung
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.491-497
    • /
    • 2005
  • Brake system is indispensible functional part to the transportation machines such as railroad cars, and all of industrial machines. It is mechanical element to stop the movement or slow the speed, transforming kinetic energy of motion object into thermal energy through solid friction. According that recently the railroad cars have become high-speed, the technique in braking domain to secure the overall braking effort is making rapid progress. In particular, material development and manufacturing process are so important to secure friction performance, which is the core in braking performance of mechanical brake units. Wear of brake disk could mainly result in the diminishment of its life span due to thermal cracking, so the endurance against high temperature is required. On the other hand, in this case, the problem is that the side wear of pad, relative material is slightly increased because of enlargement of plastic deformation. It is necessary, therefore, to develop a disk material that will be used in the Tilting System mechanical brake units. The purpose of this paper is to make a study prior to developing brake disk of Tilting Train travelling at 200km/h and to propose the component of brake disk. Accordingly, I will conduct sufficient researches on technical documents of brake disk, that are basic documentations, analyze an impact on components, and further, considering braking degree of train, study for the basic proposal on brake disk's component of the train travelling at 200km/h, which has relatively minor influence of heat stress and maintains the friction. In this respect, I would like to investigate friction characteristics between disk and relative friction material via Test on some possible test segments, analyze and propose friction performance, temperature impact and so forth coming from the contact with pad, relative material to demonstrate the friction characteristics.

  • PDF

Topology Optimization of Railway Brake Pad by Contact Analysis (접촉해석에 의한 철도차량용 제동패드의 형상 최적화)

  • Goo, Byeong-Choon;Na, In-Kyun
    • Tribology and Lubricants
    • /
    • v.30 no.3
    • /
    • pp.177-182
    • /
    • 2014
  • To stop a high speed train running at the speed of 300 km/h, the disc brake for the train should be able to dissipate enormous kinetic energy of the train into frictional heat energy. Sintered pin-type metals are mostly used for friction materials of high speed brake pads. A pad comprises several friction pins, and the topology, length, flexibility, composition, etc. have a great influence on the tribological properties of the disc brake. In this study, the topology of the friction pins in a pad was our main concern. We presented the optimization of the topology of a railcar brake pad with nine-pin-type friction materials by thermo-mechanical contact analysis. We modeled the brake pad with/without a back plate. To simulate a continuous braking, the pad or friction materials were rotated at constant velocity on the friction surface of the disc. We varied the positions of the nine friction materials to compare the temperature distributions on the disc surface. In a non-optimized brake pad, the distance between two neighboring friction materials in the radial direction from the rotational center of the disc was not equal. In an optimized pad, the distance between two neighboring friction materials in the radial direction was equal. The temperature distribution on the disc surface fluctuated more for the former than the latter. Optimizing the pad reduced the maximum temperature of the brake disc by more than 10%.

The Influence of Soil Content on the Settlement Behavior of Gravel Embankement (토사 함량에 따른 자갈 성토재료의 침하특성 분석)

  • Suhyung Lee;Jiho Kim;Beomjun Kim;Chanyoung Yune
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.11
    • /
    • pp.41-49
    • /
    • 2023
  • In this study, we analyzed the settlement characteristics of rockfill embankments mixed with soil by confirming the physical properties of soil materials mixed with silty materials and analyzing the compression characteristics of gravel materials according to the mixing ratio of soil materials. For this, we mixed silty materials into sandy soil to analyze the compression characteristics of soil materials, and we constructed a foundation by mixing various ratios of soil into rockfill materials with a particle distribution similar to that of river gravel, and conducted a one-dimensional compression experiment using a medium-sized chamber. As a result of the experiment, in the case of mixed soil materials, the Transition Fine Content (TFC) appeared in the range of 21~26% depending on the load condition, and in the case of rockfill materials mixed with soil, as the void filling ratio of soil in gravel samples increases, both total compression and creep compression decreases, but after a 50% mixing ratio, the settlement of amount increases again.

A Study on the Characteristics of Environmental Impact in Construction Sector of High-Speed Railway using LCA (LCA를 이용한 고속철도 건설단계에서의 환경부하 특성에 관한 연구)

  • Lee, Cheol;Lee, Jae-Young;Jung, Woo-Sung;Hwang, Young-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.3
    • /
    • pp.178-185
    • /
    • 2014
  • This study investigates the characteristics of environmental impact from the construction phase of a high-speed railway through a Life Cycle Assessment method based on the materials used and the energy consumption of the equipment used according to the design statement. The results reveal that the contributions to environmental impact in the construction sector of a high-speed railway were 89% for civil engineering, 7% for the track system, 2% for stations and 2% for the energy and telecommunication system. In particular, the highest contribution to the impact in the civil engineering category were 54% for Global Warming, 25% for Abiotic Resource Depletion and 8% for Photochemical Oxidant Creation. The main influence factors were the use of remicon and cement. In future, the application of Life Cycle Assessment for the construction sector of railway construction will introduce efficient reduction methods according to the quantitative calculation of environmental impact.

A research on the Tunnel bracket insulator pollution characteristic in Korea Railroad (터널브라킷 애자류 오염도 분석에 관한 연구)

  • Jeon, Yong-Joo;Ryu, Young-Tae;Park, Young-Sik;Park, Ki-Bum;Lee, Tae-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1963-1969
    • /
    • 2009
  • This paper introduces method to estimate pollutant negative influence to polymer type insulator according to the international standard. To accomplish this goal, effective sample collecting method was surface was collected directly with the same dimension. Distilled Through this method pollute is easily and accurately collected. The second step is pollutant analysis. Several analyze item is selected such as quantity, conductivity, contact angle, Optical Microscope(OM), IR spectrometer(FT-IR), Equivalent Salt Deposit Density(ESDD), Thermal Analyzer(TA) and ICP-AES. The third step, best represent tunnel was selected considering location, length and natural surroundings. Also to consider the difference at inside the tunnel, several bracket insulators were selected along to the location. To make the result precise, above procedure was repeated several times at the same target. Finally relation among type of train, numbers of movement, surroundings, length will be considered in combination with the pollution. With this result pollute map for KORAIL could be accomplished and inspect period will be optimized case by case.

  • PDF

Analysis of Vehicle Dynamic Performance after Wheel Reprofiling (차륜 전삭에 따른 차량 동적성능 분석)

  • Hur, Hyunmoo;Ahn, Dahoon;Youn, Suksoon;Choi, Yongwoon
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.5
    • /
    • pp.565-575
    • /
    • 2016
  • Wheel reprofiling is frequently conducted to remove faults such as flange wear, flat areas, and cracks that occur in railway vehicle operation. We analyzed the dynamic performances of a vehicle before and after wheel reprofiling to grasp the influence of reprofiling on the dynamic behavior of the vehicle. We measured the wheel profile of the test vehicle and conducted a running test to analyze the vibration and comfort characteristics of the test vehicle. The result of the test indicated that vibration of the test vehicle after wheel reprofiling was reduced compared to that before wheel reprofiling. And, comfort level of the test vehicle after wheel reprofiling was improved by about 3dB laterally and vertically. Consequently, the positive effect of wheel reprofiling on the dynamic performance of vehicle was verified.

Electrical Properties of XLPE and Semiconductive materials for Power Cable (전력케이블용 가교폴리에틸렌과 반도전재료의 전기적 특성)

  • Sung, Min-Woo;Song, Jung-Woo;Lee, Jong-Pil;Cho, Kyung-Soon;Lee, Soo-Won;Hong, Jin-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.491-493
    • /
    • 2000
  • The performance of insulate materials gets worse with stress time in power system and because this causes lowering of function and accidents in equipment, development and performance improvement of excellent insulate materials are needed to make stable system. In this paper, to study the influence of degradation in XLPE, inner semiconducting layer and outer semiconducting layer, we studied dielectric characteristics at temperature $25{\sim}100[^{\circ}C]$ and frequency $20{\sim}1[MHz]$ and volume resistivity at temperature $25{\sim}100^{\circ}C$, voltage.

  • PDF

A Case Study of Electronic-blasting, Railroad Tunnel to Pass under Existing Highway (기존 고속도로 하부 통과를 위한 철도터널 전자발파 시공사례)

  • Kim, Gab-Soo;Son, Young-Bok;Kim, Jae-Hoon
    • Explosives and Blasting
    • /
    • v.32 no.2
    • /
    • pp.16-24
    • /
    • 2014
  • In this "Wonju~Jaecheon double-lanes railroad" project, a highway is located at about 13meter above a tunnel. Initially, rock-splitting method was used for the tunnel excavation in order to minimize the possible damage on the highway. The method, however, takes a long time for the tunnel excavation and that may cause other problems like large displacement of tunnel and subsidence of highway ground before the tunnel can be stabilized by supporters. Therefore, the application of electronic blasting method(eDdevII) was recommended to control the blast vibration below 1.0cm/sec as well as to prevent the subsidence of highway ground. The analysis of the influence of tunnel excavation on the highway showed that electric blasting method is permissible for the safe management of the highway. Based on that, the tunnel construction under a highway could be carried out quickly and safely without any damages on the highway.