• 제목/요약/키워드: The improved soil

검색결과 1,107건 처리시간 0.036초

Effect of Rice Straw Application on Yield of Whole Crop Barley and Change in Soil Properties under Upland Condition in Saemangeum Reclaimed Tidal Land

  • Lee, Su-Hwan;Shin, Pyeong;Bae, Hui-Su;Lee, Jang-Hee;Oh, Yang-Yeol;Lee, Sang-Hun;Rho, Tae-Hwan;Song, Beom-Heon;Cho, Jae-Yeong;Lee, Kyoung-Bo;Lee, Keon-Hui;Park, Ki-Hoon
    • 한국토양비료학회지
    • /
    • 제47권6호
    • /
    • pp.586-593
    • /
    • 2014
  • Newly reclaimed tidal land is known to be in low status of soil fertility. The incorporation of crop residue is an effective method to improve soil properties and fertility in reclaimed saline soils. The objective of this study was to evaluate the efficiency of rice straw (RS) application to improve physico-chemical properties of saline-sodic soil and its contribution to productivity of whole crop barley. Increasing rate of rice straw improved growth parameter related to yield of whole crop barley, which increased tiller number significantly (p<0.05).The yield increased by 15% (F.W) and 9% (D.W) in rice straw-amended plots. The content of soil organic matter (SOM) in the surface soil (0-20cm) with rice straw incorporation increased by 5~9% (RS 2.5~RS 7.5) compared to RS 0, in which the content of SOM decreased after two consecutive cultivations. Rice straw incorporation promoted soil physico-chemical properties and nutrient-availability of the test crop, as indicated in change in soil bulk density, porosity and increased nutrient uptake of plant. Especially, the P content and uptake of whole crop barley increased with increasing the rate of rice straw application. In conclusion, the rice straw application at rates of $5.0-7.5ton{\cdot}ha^{-1}$ in reclaimed saline soils effectively improved soil properties and crop productivity, which has potentials to reduce the loss of chemical fertilizers and facilitate the favorable condition for crop growth under adverse soil condition.

Field study of the process of densification of loose and liquefiable coastal soils using gravel impact compaction piers (GICPs)

  • Niroumand, Bahman;Niroumand, Hamed
    • Geomechanics and Engineering
    • /
    • 제30권5호
    • /
    • pp.479-487
    • /
    • 2022
  • This study evaluates the performance of gravel impact compaction piers system (GICPs) in strengthening retrofitting a very loose silty sand layer with a very high liquefaction risk with a thickness of 3.5 meters in a multilayer coastal soil located in Bushehr, Iran. The liquefiable sandy soil layer was located on clay layers with moderate to very stiff relative consistency. Implementation of gravel impact compaction piers is a new generation of aggregate piers. After technical and economic evaluation of the site plan, out of 3 experimental distances of 1.8, 2 and 2.2 meters between compaction piers, the distance of 2.2 meters was selected as a winning option and the northern ring of the site was implemented with 1250 gravel impact compaction piers. Based on the results of the standard penetration test in the matrix soil around the piers showed that the amount of (N1)60 in compacted soils was in the range of 20-27 and on average 14 times the amount of (1-3) in the initial soil. Also, the relative density of the initial soil was increased from 25% to 63% after soil improvement. Also the safety factor of the improved soil is 1.5-1.7 times the minimum required according to the two risk levels in the design.

Discrete element modeling of strip footing on geogrid-reinforced soil

  • Sarfarazi, Vahab;Tabaroei, Abdollah;Asgari, Kaveh
    • Geomechanics and Engineering
    • /
    • 제29권4호
    • /
    • pp.435-449
    • /
    • 2022
  • In this paper, unreinforced and geogrid-reinforced soil foundations were modeled by discrete element method and this performed under surface strip footing loads. The effects of horizontal position of geogrid, vertical position, thickness, number, confining pressure have been investigated on the footing settlement and propagation of tensile force along the geogrids. Also, interaction between rectangular tunnel and strip footing with and without presence of geogrid layer has been analyzed. Experimental results of the literature were used to validation of relationships between the numerically achieved footing pressure-settlement for foundations of reinforced and unreinforced soil. Models and micro input parameters which used in the numerical modelling of reinforced and unreinforced soil tunnel were similar to parameters which were used in soil foundations. Model dimension was 1000 mm* 600 mm. Normal and shear stiffness of soils were 5*105 and 2.5 *105 N/m, respectively. Normal and shear stiffness of geogrid were 1*109 and 1*109 N/m, respectively. Loading rate was 0.001 mm/sec. Micro input parameters used in numerical simulation gain by try and error. In addition of the quantitative tensile force propagation along the geogrids, the footing settlements were visualized. Due to collaboration of three layers of geogrid reinforcements the bearing capacity of the reinforced soil tunnel was greatly improved. In such practical reinforced soil formations, the qualitative displacement propagations of soil particles in the soil tunnel and the quantitative vertical displacement propagations along the soil layers/geogrids represented the geogrid reinforcing impacts too.

Predicting Soil Chemical Properties with Regression Rules from Visible-near Infrared Reflectance Spectroscopy

  • Hong, Suk Young;Lee, Kyungdo;Minasny, Budiman;Kim, Yihyun;Hyun, Byung Keun
    • 한국토양비료학회지
    • /
    • 제47권5호
    • /
    • pp.319-323
    • /
    • 2014
  • This study investigates the prediction of soil chemical properties (organic matter (OM), pH, Ca, Mg, K, Na, total acidity, cation exchange capacity (CEC)) on 688 Korean soil samples using the visible-near infrared reflectance (VIS-NIR) spectroscopy. Reflectance from the visible to near-infrared spectrum (350 to 2500 nm) was acquired using the ASD Field Spec Pro. A total of 688 soil samples from 168 soil profiles were collected from 2009 to 2011. The spectra were resampled to 10 nm spacing and converted to the 1st derivative of absorbance (log (1/R)), which was used for predicting soil chemical properties. Principal components analysis (PCA), partial least squares regression (PLSR) and regression rules model (Cubist) were applied to predict soil chemical properties. The regression rules model (Cubist) showed the best results among these, with lower error on the calibration data. For quantitatively determining OM, total acidity, CEC, a VIS-NIR spectroscopy could be used as a routine method if the estimation quality is more improved.

지용성/고형오구의 혼합오염계에서 지용성오구의 혼합특성에 따른 PET직물의 세척성 (Effects of Mixed Characteristics of Oily Soil on Detergency of PET Fabric in Oily/Particulate Soil Mixed System)

  • 강인숙
    • 한국의류학회지
    • /
    • 제35권10호
    • /
    • pp.1242-1251
    • /
    • 2011
  • This study investigates the effect of mixed characteristics of oily soil such as mixed ratio, polarity of oily soil on contact angle of fabric, removal of oily and particulate soil from PET fabric in oily/particulate soil mixed system. The contact angle of fabric in the surfactant solution with suspended oily soil was examined as a fundamental environment of detergency of soil from fabrics. Detergency was investigated as function of mixed ratios of oily/ particulate soil, type of oily soil, surfactants concentration, surfactant type and temperature of detergency in surfactant solution. The contact angle of fabric in surfactant solution sharply increased with mixing nonpolar oily soil; in addition, the contact angle slightly increased with increasing contents of oily soil and decreased with increasing surfactant concentration. The removal of oily and particulate soil from fabric was higher in the solution mixed with polar versus nonpolar oily soil. The detergency increased with increasing surfactant concentration and the increased temperature of surfactants solution that were relatively improved in NPE compared to DBS solutions, The results indicated that the detergency of oily and particulate soil showed a similar trend in oily/ particulate mixed soil systems. The general contact angle of fabric was well related with the detergency of oily and particulate soil in oily/particulate mixed soil system, therefore, the primary factor determining the detergency of soil in oily/particulate mixed soil system may be the contact angle of fabric caused by wettability.

SCP 개량지만의 압밀거동에 대한 스미어 효과 (Smear Effect on Consolidation Behaviors of SCP-improved Ground)

  • Kim, Yun-Tae
    • 한국지반공학회논문집
    • /
    • 제20권2호
    • /
    • pp.59-66
    • /
    • 2004
  • SCP 개량지반은 연약지반에 타설된 모래말뚝과 주변 연약지반으로 구성된 복합지반을 형성한다. 복합지반에 상재하중이 작용할 경우, SCP쪽으로 반경방향의 흐름에 의하여 시간의존적인 압밀거동이 유발될 뿐만 아니라, SCP와 주변 연약지반 사이에서 강성도 차이로 인하여 응력전이가 유발된다. 본 논문은 SCP 개량지반의 압밀거동에 대한 교란효과의 영향을 고려하기 위하여 원통형 실린더 지반에 대한 수치해석을 수행하였다. 수치해석결과 연약지반의 교란영역은 유효응력-간극수압의 거동, 응력전이기구, 응력분담비에 영향을 줌을 알 수 있었다. 또한 SCP와 점토 사이의 응력전이량은 상부 z/H=0.25에서 가장 크며, 깊이가 증가함에 따라 감소한다. 응력분담비는 상수값이 아니라 압밀과정에 의존하며, 교란영역을 가진 연약지반의 응력분담비는 교란영역이 없는 연약지반의 응력분담비보다 큼을 알 수 있다.

리그닌 바이오차가 배추 재배에 미치는 효과 (Effect of Lignin Biochar Application on Kimchi Cabbage Cultivation)

  • 조한나;박재혁;윤진주;이승규;김소희;조주식;강세원
    • 한국환경농학회지
    • /
    • 제42권4호
    • /
    • pp.353-357
    • /
    • 2023
  • This study evaluated the effect of lignin biochar on Kimchi cabbage cultivation in an upland field. Each of the inorganic fertilizers (IF, applied at 32-7.8-19.8 kg/10a=N-P-K), lignin biochar (LBC, applied at 1,000 kg/10a), improved LBC (LBC+N, applied at 1,000 kg/10a), and LBC+IF treatments areas were separated by a control (Cn) treatment area. The fresh weight of Kimchi cabbage increased in the order LBC+N > IF > LBC+IF > Cn > LBC treatments, and the length and width of the leaf were ranged from 20.8-25.7 and 13.7-15.8 cm/plant in all treatments. After Kimchi cabbage harvesting in the LBC+N treatment, soil quality improved bulk density, pH, OM, TN, and Av-P2O5 than those other treatments. In addition, the total N2O flux in LBC+N LBC+N was lower than in IF treatments. Therefore, improved lignin biochar application effectively improves Kimchi cabbage cultivation and can benefit the agricultural environment.

임해매립지의 식재지반별 토양 물리·화학적 특성 (Physico-Chemical Properties of Soils at the Ground of Landscape Planting in Reclaimed Land from the Sea)

  • 김도균
    • 한국환경복원기술학회지
    • /
    • 제4권4호
    • /
    • pp.12-18
    • /
    • 2001
  • This study was carried out to analyze physico-chemical properties of soils at the ground of landscape planting in reclaimed land from the sea on Kwangyang Bay, South Korea. Physico-chemical properties of soils at each planting grounds were tested by ANOVA and were significantly(P<0.01) different. The difference came from the soil properties of the covered soil, the disturbance applied to the soil with land use and the accumulation of organic matter after landscape planting. Soil hardness, pH, ECe, Na and K level were in a stable condition at high then low of ground height for landscape planting. Organic matter accumulation was greater at lower planting grounds then top and slope ground of big mounding. The planting grounds of favorable growth for landscape trees were determined as following order : the slope ground and the top ground of big mounding>the ground of medium mounding>the coved ground of improve soil>the lower ground of big mounding>the filled ground of improve soil.

  • PDF

Ensemble Downscaling of Soil Moisture Data Using BMA and ATPRK

  • Youn, Youjeong;Kim, Kwangjin;Chung, Chu-Yong;Park, No-Wook;Lee, Yangwon
    • 대한원격탐사학회지
    • /
    • 제36권4호
    • /
    • pp.587-607
    • /
    • 2020
  • Soil moisture is essential information for meteorological and hydrological analyses. To date, many efforts have been made to achieve the two goals for soil moisture data, i.e., the improvement of accuracy and resolution, which is very challenging. We presented an ensemble downscaling method for quality improvement of gridded soil moisture data in terms of the accuracy and the spatial resolution by the integration of BMA (Bayesian model averaging) and ATPRK (area-to-point regression kriging). In the experiments, the BMA ensemble showed a 22% better accuracy than the data sets from ESA CCI (European Space Agency-Climate Change Initiative), ERA5 (ECMWF Reanalysis 5), and GLDAS (Global Land Data Assimilation System) in terms of RMSE (root mean square error). Also, the ATPRK downscaling could enhance the spatial resolution from 0.25° to 0.05° while preserving the improved accuracy and the spatial pattern of the BMA ensemble, without under- or over-estimation. The quality-improved data sets can contribute to a variety of local and regional applications related to soil moisture, such as agriculture, forest, hydrology, and meteorology. Because the ensemble downscaling method can be applied to the other land surface variables such as temperature, humidity, precipitation, and evapotranspiration, it can be a viable option to complement the accuracy and the spatial resolution of satellite images and numerical models.

Improving streamflow prediction with assimilating the SMAP soil moisture data in WRF-Hydro

  • Kim, Yeri;Kim, Yeonjoo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.205-205
    • /
    • 2021
  • Surface soil moisture, which governs the partitioning of precipitation into infiltration and runoff, plays an important role in the hydrological cycle. The assimilation of satellite soil moisture retrievals into a land surface model or hydrological model has been shown to improve the predictive skill of hydrological variables. This study aims to improve streamflow prediction with Weather Research and Forecasting model-Hydrological modeling system (WRF-Hydro) by assimilating Soil Moisture Active and Passive (SMAP) data at 3 km and analyze its impacts on hydrological components. We applied Cumulative Distribution Function (CDF) technique to remove the bias of SMAP data and assimilate SMAP data (April to July 2015-2019) into WRF-Hydro by using an Ensemble Kalman Filter (EnKF) with a total 12 ensembles. Daily inflow and soil moisture estimates of major dams (Soyanggang, Chungju, Sumjin dam) of South Korea were evaluated. We investigated how hydrologic variables such as runoff, evaporation and soil moisture were better simulated with the data assimilation than without the data assimilation. The result shows that the correlation coefficient of topsoil moisture can be improved, however a change of dam inflow was not outstanding. It may attribute to the fact that soil moisture memory and the respective memory of runoff play on different time scales. These findings demonstrate that the assimilation of satellite soil moisture retrievals can improve the predictive skill of hydrological variables for a better understanding of the water cycle.

  • PDF