• Title/Summary/Keyword: The height of wall

Search Result 902, Processing Time 0.028 seconds

The Geomorphic Changes of Sand-Beach Coasts by Human Impact in Byeonsan Peninsula, Southwest Korea (인간간섭에 따른 변산반도 사빈해안의 지형변화)

  • CHOI, Hoon;LEE, Min-Boo
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.3
    • /
    • pp.83-96
    • /
    • 2012
  • The origins of beaches at Byeonsan Peninsular, as a pocket type, are classified to a sand barrier type and wave-cut type. The beaches had developed by the deposition of the silt and clay layers on the 10m height from sea level in the inner bay during climax era of postglacial transgression. At that time, some sands had blown toward the inland hills to form aeolian deposits. After postglacial sea-level stabilization, sometimes, there has been the negative budget of beach materials. Recently, beaches have been transformed by human impact such as construction of Saemangeum sea-wall, especially in the Byeonsan and Gosapo beaches being close to the sea-wall. So the speed of tidal currents become slower and comparatively depositoinal activity stronger. And the level of chemical weathering has been higher. In Byeonsan beach, the ratio of coarse sand decreased with higher ratio of finer materials and by beach erosion dissected runnels developed, running parallel to the coastline. In Gosapo beach, supply of suspended materials are increased through the Garyeok drainage gate, the sands tend to be finer.

Generalized Lateral Load-Displacement Relationship of Reinforced Concrete Shear Walls (철근콘크리트 전단벽의 횡하중-횡변위 관계의 일반화)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.159-169
    • /
    • 2014
  • This study generalizes the lateral load-displacement relationship of reinforced concrete shear walls from the section analysis for moment-curvature response to straightforwardly evaluate the flexural capacity and ductility of such members. Moment and curvature at different selected points including the first flexural crack, yielding of tensile reinforcing bar, maximum strength, 80% of the maximum strength at descending branch, and fracture of tensile reinforcing bar are calculated based on the strain compatibility and equilibrium of internal forces. The strain at extreme compressive fiber to determine the curvature at the descending branch is formulated as a function of reduction factor of maximum stress of concrete and volumetric index of lateral reinforcement using the stress-strain model of confined concrete proposed by Razvi and Saatcioglu. The moment prediction models are simply formulated as a function of tensile reinforcement index, vertical reinforcement index, and axial load index from an extensive parametric study. Lateral displacement is calculated by using the moment area method of idealized curvature distribution along the wall height. The generalized lateral load-displacement relationship is in good agreement with test result, even at the descending branch after ultimate strength of shear walls.

Seismic behavior investigation of the steel multi-story moment frames with steel plate shear walls

  • Mansouri, Iman;Arabzadeh, Ali;Farzampour, Alireza;Hu, Jong Wan
    • Steel and Composite Structures
    • /
    • v.37 no.1
    • /
    • pp.91-98
    • /
    • 2020
  • Steel plate shear walls are recently used as efficient seismic lateral resisting systems. These lateral resistant structures are implemented to provide more strength, stiffness and ductility in limited space areas. In this study, the seismic behavior of the multi-story steel frames with steel plate shear walls are investigated for buildings with 4, 8, 12 and 16 stories using verified computational modeling platforms. Different number of steel moment bays with distinctive lengths are investigated to effectively determine the deflection amplification factor for low-rise and high-rise structures. Results showed that the dissipated energy in moment frames with steel plates are significantly related to the inside panel. It is shown that more than 50% of the dissipated energy under various ground motions is dissipated by the panel itself, and increasing the steel plate length leads to higher energy dissipation capability. The deflection amplification factor is studied in details for various verified parametric cases, and it is concluded that for a typical multi-story moment frame with steel plate shear walls, the amplification factor is 4.93 which is less than the recommended conservative values in the design codes. It is shown that the deflection amplification factor decreases if the height of the building increases, for which the frames with more than six stories would have less recommended deflection amplification factor. In addition, increasing the number of bays or decreasing the steel plate shear wall length leads to a reduction of the deflection amplification factor.

Diffraction Properties from Periodic Slot Array in the Upper Wall of Parallel Plate Waveguide (평행평판 도파관의 윗면에 위치한 주기적인 슬롯 배열에 의한 전자파의 회절특성)

  • Park Jin-Taek;Hong Jae-Pyo;Ko Ji-Whan;Cho Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.3 s.94
    • /
    • pp.311-318
    • /
    • 2005
  • Periodically perforated slot structure in the upper wall of the parallel plate waveguide is analyzed with main interest focusing on the diffraction Properties. The Periodic slot array is of infinite extent in one direction and of finite extent in the other direction. Various numerical results for reflection from the slotted section and transmission beyond the slotted section, and the radiation through the slotted section into the upper half space are presented with the height of feeding parallel plate waveguide, single slot size, and the periodicity between slots as parameters. This study is thought to be helpful to the design of the ventilation hole in the TFT-LCD and PDP.

Design of a Waveguide Broad-wall Longitudinal Slot Array Antenna of X-type Monopulse Axes (X-형 모노펄스 축구조를 가지는 도파관 광벽 종방향 슬롯 배열 안테나의 설계)

  • 나형기;박창현
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.2
    • /
    • pp.208-216
    • /
    • 2002
  • In this paper, the design method of a waveguide broad-wall longitudinal slot array monopulse antenna of X-type monopulse axes is presented, and the method is verified through manufacture and measurement. In the antenna design of this paper, the antenna size is small and the monopulse axes are X-type. Thus, the common continuous aperture distribution fuction is not suitable and the power balance among antenna quadrants should be considered. Also, since the waveguide height is reduced into 0.1 wavelength, the modelling of the slot characteristics is not simple. Thus, in this paper, the aperture distribution is optimized by using random number, and the balance among the quadrants is achieved by applying the quadrant weighting factor during the aperture optimization process. Also, the moment method procedure is accelerated by applying the interpolation technique to some part of the moment matrix, and the moment method procedure is added to the array synthesis program as a subroutine so that the slot characteristics can be calculated directly when it is required. Based on this method, a antenna of 28dBi is designed and manufactured. It is found that the antenna characteristics is similar to design data.

A Study on the Hydraulic Experiments of Modi Khola Hydroelectric in Nepal (네팔 Modi Khola 수력발전소 수리모형실험 연구)

  • 선우중호;박창근
    • Water for future
    • /
    • v.28 no.1
    • /
    • pp.107-120
    • /
    • 1995
  • This study is concerned with the hydraulic experiments of Modi Khola Hydroelectric in Nepal. The experimental domain consists of the intake structure and the settling basin. The intake structure was made by the undistorted model with the scale of 1:20, the settling basin by the distorted model with the scale of 1:10(vertical) and 1:15(horizontal). Based on the movable bed model theory, the 'Anthracite'($\rho_s$ =1.48) is chosen as a model material. According to the model tests, the installation of the guide wall with proper height and the proper control of the flushing gate are required for the effective flushing in the intake structure. In the settling basin a more proper design of the inlet in order to constrain the turbulence flow is required for an efficient sedimentation and the installation of another flushing pipe near the maximum sedimental area is required. Since the trap efficiency is measured about 95%, it is concluded that the design of the settling basin is proper.

  • PDF

Influence of Turning Region and Channel Rotation on Pressure Drop in a Square Channel with Transverse Ribs (90° 요철이 설치된 정사각 덕트 내 압력강하에 곡관부 및 회전이 미치는 영향)

  • Kim, Kyung-Min;Lee, Dong-Hyun;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.126-135
    • /
    • 2006
  • The pressure drop characteristics in a rotating two-pass duct with rib turbulators are investigated in the present study. The square duct has a hydraulic diameter $(D_h)$ of 26.7 mm, and $1.5mm{\times}1.5mm$ square $90^{\circ}-rib$ turbulators are attached on the leading and trailing walls. The pitch-to-rib height ratio (p/e) is 10. The distance between the tip of the divider and the outer wall of the duct is $1.0D_h$ and the width of divider wall is 6.0mm or $0.225D_h$. The Reynolds number (Re) based on the hydraulic diameter is kept constant at 10,000 to exclude the Reynolds effect, and the rotation number (Ro) is varied from 0.0 to 0.20. The pressure drop distribution, the friction factor and thermal performance are presented for the leading, trailing and the outer surfaces. It is found that the curvature of the $180^{\circ}$-turn produces Dean vortices that cause high pressure drop in the turn. The channel rotation results in pressure drop discrepancy between leading and trailing surfaces so that non-dimensional pressure drops are higher on the trailing surface in the first-pass and on the leading and side surfaces in the second-pass. In the turning region, Dean vortices shown in the stationary case transform into one large asymmetric vortex cell, and subsequent pressure drop characteristics also change. As the rotation number increases, the pressure drop discrepancy enlarges.

ELECTRO-MICROSCOPE BASED 3D PLANT CELL IMAGE PROCESSING METHOD

  • Lee, Choong-Ho;Umeda Mikio;Takesi Sugimoto
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.227-235
    • /
    • 2000
  • Agricultural products are easily deformable its shape because of some external forces. However, these force behavior is difficult to measure quantitatively. Until now, many researches on the mechanical property was performed with various methods such as material testing, chemical analysis and non-destructive methods. In order to investigate force behavior on the cellular unit of agricultural products, electro-microscope based 3D image processing method will contribute to analysis of plant cells behavior. Before image measurement of plant cells, plant sample was cut off cross-sectioned area in a size of almost 300-400 ${\mu}$ m units using the micron thickness device, and some of preprocessing procedure was performed with fixing and dyeing. However, the wall structure of plant cell is closely neighbor each other, it is necessary to separate its boundary pixel. Therefore, image merging and shrinking algorithm was adopted to avoid disconnection. After then, boundary pixel was traced through thinning algorithm. Each image from the electro-microscope has a information of x,y position and its height along the z axis cross sectioned image plane. 3D image was constructed using the continuous image combination. Major feature was acquired from a fault image and measured area, thickness of cell wall, shape and unit cell volume. The shape of plant cell was consist of multiple facet shape. Through this measured information, it is possible to construct for structure shape of unit plant cell. This micro unit image processing techniques will contribute to the filed of agricultural mechanical property and will use to construct unit cell model of each agricultural products and information of boundary will use for finite element analysis on unit cell image.

  • PDF

A Study on the Coupling Performance Improvement of Cylindrical DR Bandpass Filter using Travelling Wave Mode Analysis (진행모드 해석을 이용한 유전체 공진기 대역통과 필터의 결합 특성 개선에 관한 연구)

  • Lee, Won-Hui;Park, Chang-Won;Yang, Jae-Hyuck;Hur, Jung;Lee, J. H.;Lee, Sang-Young
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.125-129
    • /
    • 2000
  • In this paper, We designed and fabricated C-band bandpass filter using dielectric resonators. From waveguide cutoff frequency which applied the region between adjacent dielectric resonators, the height of cavity is determined. The cavity's diameter is determined to the twice of dielectric resonator's diameter considering the conductor loss. The resonant frequency of the DR-cavity is calculated with travelling wave mode analysis. Conventionally, circular cylindrical dielectric resonator is analysed by Cohn's model which use the evanescent mode in the region between dielectric resonator wall and circular cavity wall, which is an approximated method. The external quality factor, Q$_{ex}$ has found with simulation result using Ansoft's Maxwell simulation tool. The designed filter using dielectric resonators with dielectric constant of 45 has the passband center at 5.065GHz. The bandpass filter using dielectric resonators have about 1dB insertion loss. 20MHz bandwidth and more than 30dB attenuation at f$_{0}$$\pm$15MHz.z.z.

  • PDF

Analysis of Temperature Distribution and Heat Loss for an Asymmetric Trapezoidal Fin (비대칭 사다리꼴 핀의 온도분포와 열손실 해석)

  • Kang, Hyung-Suk;Song, Nyeon-Joo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.4
    • /
    • pp.377-383
    • /
    • 2012
  • The temperature distribution of an asymmetric trapezoidal fin with various upper lateral surface slopes is investigated by using the two-dimensional analytic method. For this asymmetric fin, convection from the inner fluid to the inner wall, conduction from the inner wall to the fin base and conduction through the fin base are considered simultaneously. The temperature profile with the variation of dimensionless fin length and height coordinates is shown. Also, the temperature variation at the bottom tip of the fin is presented as a function of the fin shape factor. Heat losses through the fin base and from each side are compared for variations in fin length. One of the results shows that temperature at the fin bottom tip decreases linearly as the fin shape factor increases.