• Title/Summary/Keyword: The fire safety

Search Result 3,669, Processing Time 0.034 seconds

A Analytical Study on Seismic Performance of Stainless Water Tank using Lead Rubber Bearing (납고무받침을 이용한 스테인리스 물탱크 내진성능에 관한 해석적 연구)

  • Kim, Hu-Seung;Oh, Ju;Jung, Hie-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.230-236
    • /
    • 2018
  • Earthquakes over 5.0 on the Richter scale have recently occurred in Korea, which has led to interest in the seismic safety of structures. If a water storage facility is damaged by an earthquake, the water could leak, and the insufficient water would make fire suppression difficult. Therefore, a water storage facility should satisfy safety requirements for earthquakes. In this study, the seismic performance of a water tank was improved by installing a lead rubber bearing between the foundation and the tank. It designed the lead rubber bearing available to the existed concrete foundation. ANSYS was used for modeling to consider the interaction between the fluid and structure of the tank and the hydrostatic and hydrodynamic pressure using four seismic waves. In the case of hydrostatic pressure at 2.5 water level, full level, the same stress appeared irrespective of whether the seismic isolation was installed. When hydrostatic pressure and hydrodynamic pressures are applied at the same time, the seismic-isolated water tank showed less seismic force, and the damping ratio was lower than that of general seismic isolation. This occurred because the weight of the water tank is much smaller than the stiffness of the seismic isolation. The result is expected to be used for further research on seismic capacity evaluation for water tanks.

Risk analysis of flammable range according to hydrogen vehicle leakage scenario in road tunnel (도로터널 내 수소차 누출시나리오에 따른 가연영역에 대한 위험성분석 연구)

  • Lee, Hu-Yeong;Ryu, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.4
    • /
    • pp.305-316
    • /
    • 2022
  • Hydrogen energy is emerging as an alternative to the depletion of fossil fuels and environmental problems, and the use of hydrogen vehicles is increasing in the automobile industry as well. However, since hydrogen has a wide flammability limit of 4 to 75%, there is a high concern about safety in case of a hydrogen car accident. In particular, in semi-enclosed spaces such as tunnels and underground parking lots, a fire or explosion accompanied by hydrogen leakage is highly likely to cause a major accident. Therefore, it is necessary to review hydrogen safety through analysis of flammability areas caused by hydrogen leakage. Therefore, in this study, the effect of the air velocity in the tunnel on the flammability area was investigated by analyzing the hydrogen concentration according to the hydrogen leakage conditions of hydrogen vehicles and the air velocity in the tunnel in a road tunnel with standard section. Hydrogen leakage conditions were set as one tank leaking and three tanks leaking through the TPRD at the same time and a condition in which a large crack occurred and leaked. And the air velocity in the tunnel were considered 0, 1, 2.5, and 4.0 m/s. As a result of the analysis of the flammability area, it is shown that when the air velocity of 1 m/s or more exists, it is reduced by up to 25% compared to the case of air velocity of 0 m/s. But there is little effect of reducing the flammability area according to the increase of the wind speed. In particular, when a large crack occurs and completely leaks in about 2.5 seconds, the flammability area slightly increases as the air velocity increases. It was found that in the case of downward ejection, hydrogen gas remains under the vehicle for a considerably long time.

A Study on the Causes and Improvement Plans for Firefighters' Casualty Accidents During Rescue Activities related to the Water - 4M Analysis - (수난구조활동 중 소방공무원 순직사고의 원인과 대응방안에 관한 연구 - 4M분석기법을 중심으로 -)

  • Park, Chanseok
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.710-721
    • /
    • 2021
  • Purpose: The purpose of this study is to prepare an environment that can provide high-quality 119 rescue services by analyzing the causes of casualties at the water rescue and suggesting improvement plans to prevent them. Method: 5 major cases were analyzed among firefighters' casualty accidents during rescue activities related to the water over the past 10 years for case study. And the causes of the accidents were analyzed in terms of 4 values (Man, Machine, Media, Management) through the 4M analysis technique. Result: ① man: the main causes are lack of awareness of on-site safety, etc ② machine: the problem of the absence of the equipment itself, etc ③ media: the lack of information on the rescue site and the poor rescue environment conditions, ④ management : the main causes were the absence and inadequacy of the response manual for each rescue site, Conclusion: ① man: knowledge of SOP and reinforcement of education and training, etc. ② machine: there are measures such as the introduction of equipment suitable for the changing rescue site, ③media: providing sufficient information about the rescue activity environment and conducting regular road training, ④ management: policy suggestions such as establishment and dissemination of on-site safety management plans and manuals were derived.

A Study on the Improvement of National Marine Pollution Response Policy based on the Analysis of Gulf of Mexico Oil Spill Incident (미국 멕시코만 오염사고 분석을 통한 국가방제정책 개선방안 연구)

  • Kim, Sang-Woon;Lim, Chang-Soo;Lee, Wan-Sub;Ha, Chang-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.3
    • /
    • pp.257-264
    • /
    • 2011
  • On April 20, 2010, semi-submersible offshore drilling unit Deepwater Horizon was exploded and sank, and 4.9 million barrels(about 778 thousand tons) of crude oil was spilled into the Gulf of Mexico. As more than one year has been passed since the incident, a lot of investigation reports and lessons learned have been made public and also a lot more will be released soon. This paper studies the final report of the National Commission on "the BP Deepwater Horizon Oil Spill and Offshore Drilling", which was organized by the executive directive of U.S. President Barack Obama, and the interim report of Joint Investigation team of U.S. Coast Guard and BOEMRE of "Report of Investigation into the Circumstances Surrounding the Explosion, Fire, Sinking and Loss of Eleven Members Aboard the Mobile Offshore Drilling Unit Deepwater Horizon". The review is focused on the response to the oil spill. And the paper suggests how to improve national marine pollution response policy. In the paper, the Korean governments is suggested to reinforce the capability for instructing and supervising the responsible party's source control measures, to review how to introduce in-situ burning and vessel of opportunity program into our country, and to continue monitoring on the progress of developments of R&D projects related to oil spill response in the U.S..

Proposal for Ignition Source and Flammable Material Safety Management through 3D Modeling of Hazardous Area: Focus on Indoor Mixing Processes (폭발위험장소 구분도의 3D Modeling을 통한 점화원 및 가연물 안전관리 방안 제안: 실내 혼합공정을 중심으로)

  • Hak-Jae Kim;Duk-Han Kim;Young-Woo Chon
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.47-59
    • /
    • 2024
  • Purpose: This study aims to propose measures for the prevention of fire and explosion accidents within manufacturing facilities by improving the existing classification criteria for hazardous locations based on the leakage patterns of flammable liquids. The objective is to suggest ways to safely manage ignition sources and combustible materials. Method: The hazardous locations were calculated using "KS C IEC 60079-10-1," and the calculated explosion hazard distances were visualized in 3D. Additionally, the formula for the atmospheric dispersion of flammable vapors, as outlined in "P-91-2023," was utilized to calculate the dispersion rates within the hazardous locations represented in 3D. Result: Visualization of hazardous locations in 3D enabled the identification of blind spots in the floor plan, facilitating immediate recognition of ignition sources within these areas. Furthermore, when calculating the time taken for the Lower Explosive Limit (LEL) to reach within the volumetric space of the hazardous locations represented in 3D, it was found that the risk level did not correspond identically with the explosion hazard distances. Conclusion: Considering the atmospheric dispersion of flammable liquids, it was concluded that safety management should be conducted. Therefore, a method for calculating the concentration values requiring detection and alert based on realistically achievable ventilation rates within the facility is proposed.

Flame Instability in Heptane Pool Fires Near Extinction (소화근처 헵탄 풀화재의 화염불안정성)

  • Jeong, Tae Hee;Lee, Eui Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1193-1199
    • /
    • 2012
  • A cup burner experiment was performed to investigate the effect of the oxidizer velocity and concentration on flame instability near extinction. Heptane was used as a fuel and air diluted by nitrogen and carbon dioxide was used in the oxidizer stream. Two types of flame instabilities at the flame base and at axial downstream were observed near extinction. The instability at the flame base could be characterized by cell, swing, and rotation modes, and the cell mode changed to the rotation mode through the swing mode as the oxidizer velocity increased. To assess the parameters for the flame instability, the initial mixture strengths, Lewis number, and adiabatic flame temperature were investigated under each condition. The Lewis number might be the most important among them, but it is impossible to generalize because of the insufficient number of cases. Furthermore, the axial periodic flickering motion disappeared at low and high oxidizer velocities near extinction. This resulted from the fact that low oxidizer velocity induced evaporated fuel velocity below the critical velocity and high velocity made the reacting fuel velocity comparable.

A Study on the Identification of Hazardous Factors and Prevention of Accident in Old Boilers (노후보일러 유해인자 발굴 및 사고예방에 관한 연구)

  • Sa, Min-Hyung;Woo, In-Sung
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.4
    • /
    • pp.1-9
    • /
    • 2019
  • Large-scale industrial boilers operating at high temperature and high pressure, have a large amount of water, and a large amount of energy is released at the time of explosion. Currently, most industrial boilers use gas fuel such as LNG and LPG, etc. and fuel exists in the same space as equipment, so there is a high possibility of secondary damage such as fire or explosion in the event of a boiler accident. Both special care and management are required to operate the very dangerous equipment that causes casualty 2.51 per accident. For boilers of a certain size or more, the Korea Energy Agency conducts inspections in accordance with the Energy Usage Rationalization Act, KS, and public notice of the Ministry of Industry, Trade and Resources. In this research, based on the results of the inspection, the hazard factorss are configured, and a questionnaire is conducted to the inspector, the equipment manager, the maintenance person, and the person in charge of the manufacturer. We analyzed the results by using AHP (Analytic Hierarchy Process). As a result of analysis, generally recognized hazard factorss are not good management, measurement failure, specification failure, water leak, leak analysis, but connection, welding, scale, and corrosion, etc. are relatively less important. It is judged that the adverse factors that are recognized to be highly important among all groups and careers are already well managed, but less important and adverse factors should be well managed to ensure that the safe usage of the boiler.

Combustion of ethyl alcohol and kerosene fuel droplets in atmospheric pressure (대기압하에서의 에틸알코올과 케로신 연료액적의 연소에 관한 연구)

  • Han, jae-seob;Kim, seon-jin;Park, bong-yeop;Kim, yoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.3
    • /
    • pp.71-78
    • /
    • 2001
  • This paper presents the results of an experimental investigation on the combustion of single droplets arrays of Ethyl alcohol and kerosene fuel droplets in atmospheric pressure. The initial droplet diameters, d$_{0}$, were nominally 1.3~1.8mm, and inter-droplet separation distance l(l/do=1.31~2.60). experimental results indicate that burning rate constants(K) of ethyl alcohol and kerosene droplets were independent of initial droplet size as 0.0083, 0.0095 $\textrm{cm}^2$/sec. For 1-D droplet array's kerosene fuel droplet, burning rate constants(K) decreases with decreasing normalized inter-droplet distance. Normalized inter-droplet distance has stronger effect on 2nd fuel droplet than 3rd fuel droplet. When normalized inter-droplet distance is larger than 2.60, the effect of droplet spacing on droplet life is very small.

  • PDF

Thermal Packaging for Firefighters' Personal Protective Elctronic Equipments (소방대원 개인보호용 전자장비 패키징 기술개발)

  • Park, Woo-Tae;Jeon, Jiwon;Choi, Han Tak;Woo, Hee Kwon;Woo, Deokha;Lee, Sangyoup
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.319-325
    • /
    • 2015
  • While the conventional personal protective equipments (PPEs) covers a variety of devices and garments such as respirators, turnout gear, gloves, blankets and gas masks, several electronic devices such as personal alert safety system (PASS) and heads-up displays in the facepiece have become a part of firefighters personal protective equipments through past several years. Furthermore, more advanced electronic sensors including location traking sensor, thermal imaging caerma, toxic gas detectors, and even physiological monitoring sensors are being integrated into ensemble elements for better protection of firefighters from fire sites. Despite any electronic equipment placed on the firefighter must withstand environmental extremes and continue to properly function under any thermal conditions that firefighters routinely face, there are no specific criteria for these electronics to define functionability of these devices under given thermal conditions. Although manufacturers provide the specifications and performance guidelines for their products, their operation guidelines hardly match the real thermal conditions. Present study overviews firefighter's fatalities and thermal conditions that firefighters and their equipments face. Lastly, thermal packaging methods that we have developed and tested are introduced.

AE Characteristic under Tensile of Carbon Steel for High-Pressure Pipe (고압배관용 탄소강의 인장시 음향방출 특성)

  • Nam Kiwoo;Lee Siyoon
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.2 s.19
    • /
    • pp.48-53
    • /
    • 2003
  • This study is to look at the effect for deformation of carbon steel for high-presure pipe, on the AE signals produced by tensile test. Acoustic emission(AE) has been widely used in various fields because of its extreme sensitivity, dynamic detection ability and location of growing defects. We investigated a relationship failure mode and AE signals by tensile test, From the tensile test, we could divide into four ranges of the failure modes of elastic range, yield range, plastic range before $\sigma$u, plastic range after $\sigma$u. And failure behaviors of elastic range, yield range, plastic range before $\sigma$u, plastic range after $\sigma$u could be evaluated in tensile test by AE counts, accumulation counts and time frequency analysis. It is expected to be basic data that can protect a risk according to tensile test and bending of pipe material for pressure vessel, as a real time test of AE.

  • PDF