• Title/Summary/Keyword: The dynamic damping effect

Search Result 420, Processing Time 0.027 seconds

Effect of Moisture Contents and Density of Paulownia tomentosa on Acoustical Properties (함수율과 밀도가 참오동나무재의 음향 특성에 미치는 영향)

  • Yoo, Tae-Kyung;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.61-66
    • /
    • 1997
  • Paulownia wood has been used as sound board for Korean traditional musical instruments such as Keomungo(Korean lute), Kayagum(twelve-stringed Korean harp) and Changgu(hour-glass shaped drum), etc. The acoustic properties of wood affected not only by dimensions but also by density and stiffness of wood. Due to inhomogeneity and hygroscopicity of wood. the acoustic properties of wood are inconsistent. To clarify the effect of moisture content and air dry density on acoustic properties, longitudinal vibration experiment was accomplished in 3 moisture content levels of 9.6, 11.1 and 12.5% and in 3 air dry density levels of 0.22, 0.25 and 0.28g/$cm^3$. The results were as follows: As the moisture content increased, the fundamental frequency. specific dynamic Young's modulus and sound velocity decreased, but the internal friction increased so that loss of energy increased. The values in damping of sound radiation were rapidly decreased at 12.5%. It meant that the damping of internal friction was larger than damping of sound radiation at high moisture content. As the air dry density increased, the fundamental frequency, specific dynamic Young's modulus and sound velocity increased, but the internal friction and damping of sound radiation decreased so that loss of energy decreased. And acoustic converting efficiency was hardly influenced by increasing air drying density.

  • PDF

Analysis for Response of Launcher System with Continuous Impact Load (연속충격을 고려한 발사대 반응특성 해석)

  • Lim, O-Kaung;Yoo, Wan-Suk;Choi, Eun-Ho;Ryu, Jae-Bong;Lee, Chang-Hoon;Kim, Sang-Geun
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.718-723
    • /
    • 2007
  • A three dimensional multibody modeling of a launcher system was developed and dynamic characteristics of the system was carried out. All the components were modeled as rigid bodies, All the components of system, ie; chassis, turret, cage and suspension parts, are modeled as rigid. The force interaction between the ground and tire was modeled as a point contact model. The factors were selected as cause and effect diagram of the MINITAB. To see effect of the stiffness, damping, mass at the launcher system, several cases of suspension parameters were compared and optimal values were selected. The stiffness and the damping coefficient were selected as design variables to minimize the required time for the next fire. The dynamic simulation was carried out using the ADAMS, and the MINITAB was employed for data analysis.

  • PDF

Effect of countermeasures on the galloping instability of a long-span suspension footbridge

  • Ma, Ruwei;Zhou, Qiang;Li, Mingshui
    • Wind and Structures
    • /
    • v.30 no.5
    • /
    • pp.499-509
    • /
    • 2020
  • The aeroelastic stability of a long-span suspension footbridge with a bluff deck (prototype section) was examined through static and dynamic wind tunnel tests using a 1:10 scale sectional model of the main girder, and the corresponding aerodynamic countermeasures were proposed in order to improve the stability. First, dynamic tests of the prototype sectional model in vertical and torsional motions were carried out at three attack angles (α = 3°, 0°, -3°). The results show that the galloping instability of the sectional model occurs at α = 3° and 0°, an observation that has never been made before. Then, the various aerodynamic countermeasures were examined through the dynamic model tests. It was found that the openings set on the vertical web of the prototype section (web-opening section) mitigate the galloping completely for all three attack angles. Finally, static tests of both the prototype and web-opening sectional models were performed to obtain the aerodynamic coefficients, which were further used to investigate the galloping mechanism by applying the Den Hartog criterion. The total damping of the prototype and web-opening models were obtained with consideration of the structural and aerodynamic damping. The total damping of the prototype model was negative for α = 0° to 7°, with the minimum value being -1.07%, suggesting the occurrence of galloping, while that of the web-opening model was positive for all investigated attack angles of α = -12° to 12°.

A Study on the Influence Factor in Measuring the Dynamic Stiffness and Loss Factor of Damping Materials (완충재의 동탄성 및 손실계수 측정 시 영향인자에 관한 연구)

  • Lee, S.H.;Jeong, G.C.;Chung, J.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.279-282
    • /
    • 2005
  • The aim of this study is to suggest the method of measuring the dynamic stiffness and loss factor of materials used under floating floors in the dwelling by korea standard (KS F 2868). According to the results, the amplitude change of an impact source have no effect on the variation of the dynamic stiffness and loss factor. Comparing with the heating before, heating makes lower the dynamic stiffness except the EPS. In EVA material, the loss factor is increased by heating.

  • PDF

Prediction of the Damage in the Structure with Damping Using the Modified Dynamic Characteristics (동특성 변화를 이용한 감쇠 구조물의 손상예측)

  • Lee, Jung Youn
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.11
    • /
    • pp.1144-1151
    • /
    • 2012
  • A damage in structure alters its dynamic characteristics. The change is characterized by changes in the modal parameter, i.e., modal frequencies, modal damping value and mode shape associated with each modal frequency. Changes also occur in some of the structural parameters; namely, the mass, damping, stiffness matrices of the structure. In this paper, evaluation of changes in stiffness matrix of a structure is presented as a method not only for identifying the presence of the damage but also locating the damage. It is shown that changed stiffness matrix can be accurately estimated a sensitivity coefficient matrix derived from modifying mode shapes, First, with 4 story shear structure models, the effect of presence of damage in a structure on its stiffness matrix is studied. By using these analytical model, the effectiveness of using change of stiffness matrix in detecting and locating damages is demonstrated. To validate the predicted changing stiffness and its location, the obtained results are compared to the reanalysis result which shows good agreement.

Dynamic response of pile foundations with flexible slabs

  • Kaynia, Amir M.
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.495-506
    • /
    • 2012
  • An elasto-dynamic model for pile-soil-pile interaction together with a simple plate model is used in this study to assess the effect of flexible foundation slabs on the dynamic response of pile groups. To this end, different pile configurations with various slab thicknessesare considered in two soil media with low and high elastic moduli. The analyses include dynamic impedances and seismic responses of pile-group foundations. The presented results indicate that the stiffness and damping of pile foundations increase with thickness of the foundation slab; however, the results approach those for rigid slab as the slab thickness approaches twice the pile diameter for the cases considered in this study. The results also reveal that pile foundations with flexible slabs may amplify the earthquake motions by as much as 10 percent in the low to intermediate frequency ranges.

Dynamic interaction analysis between actively controlled Maglev and bridge (능동제어되는 자기부상열차와 교량의 동적상호작용해석)

  • Lee, Jun-Seok;Kwon, Soon-Duck;Yu, In-Ho;Kim, Moon-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.555-560
    • /
    • 2008
  • Dynamic interaction analysis between actively controlled Maglev and bridge is carried out. For this, dynamic governing equation for 2-dof Maglev vehicle and optimal feedback control scheme of DOFC are developed. And then the dynamic effect of the 1st natural frequency of bridge, vehicle/bridge mass ratio and damping coefficient of bridge to the both of air-gap variations of UTM-01 maglev vehicle and bridge center maximum displacement response are investigated. From the results of numerical simulation, it is found that the 1st natural frequency of bridge, vehicle/bridge mass ratio and damping coefficient of bridge does not affect greatly within design velocity of the vehicle.

  • PDF

Surface and small scale effects on the dynamic buckling of carbon nanotubes with smart layers assuming structural damping

  • Farokhian, Ahmad;Salmani-Tehrani, Mehdi
    • Steel and Composite Structures
    • /
    • v.37 no.2
    • /
    • pp.229-251
    • /
    • 2020
  • In this paper, dynamic buckling of a smart sandwich nanotube is studied. The nanostructure is composed of a carbon-nanotube with inner and outer surfaces coated with ZnO piezoelectric layers, which play the role of sensor and actuator. Nanotube is under magnetic field and ZnO layers are under electric field. The nanostructure is located in a viscoelastic environment, which is assumed to obey Visco-Pasternak model. Non-local piezo-elasticity theory is used to consider the small-scale effect, and Kelvin model is used to describe the structural damping effects. Surface stresses are taken into account based on Gurtin-Murdoch theory. Hamilton principle in conjunction with zigzag shear-deformation theory is used to obtain the governing equations. The governing equations are then solved using the differential quadrature method, to determine dynamic stability region of the nanostructure. To validate the analysis, the results for simpler case studies are compared with others reported in the literature. Then, the effect of various parameters such as small-scale, surface stresses, Visco-Pasternak environment and electric and magnetic fields on the dynamic stability region is investigated. The results show that considering the surface stresses leads to an increase in the excitation frequency and the dynamic stability region happens at higher frequencies.

Experimental study and numerical modeling of liquid sloshing damping in a cylindrical container with annular and sectorial baffles

  • Mohammadi, Mohammad Mahdi;Moosazadeh, Hamid
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.4
    • /
    • pp.349-366
    • /
    • 2022
  • The ability of baffles in increasing the sloshing damping is investigated in this study by theoretical, numerical, and experimental methods. Baffles Installed as separators in containers, can change the dynamic properties of sloshing. The main purpose of this study is to investigate the effect of baffle placement.The main purpose of this study is to investigate the effect of placing baffles in order to provide appropriate frequencies and damping and to present a practical baffle arrangement in the design ofsloshing. In this regard, an experimental setup is designed to study the fluid sloshing behavior and damping properties in cylindrical tanks filled up to an arbitrary depth. A new combination of annular and sectorial baffles is employed to evaluate fluid sloshing in the tank. The results show that the proposed baffle arrangement has a desired effect on the damping and fluid sloshing frequencies and optimally satisfies the anticipated design requirements. In addition, the theoretical frequencies exceed empirical frequencies at the points far from baffles, while at the points close to baffles, the empirical ones are higher than theoretical ones. Also, at the depths near the bottom of container sloshing frequencies are not affected by sectorial baffles, although the theoretical curve predicts a reduction in the fundamental frequency of sloshing. Finally, the results of finite volume and finite element methods which compared with experimental data, indicated a good agreement between different approaches.

Experimental Verification of Analysis Model of the Shadow Mask with Damping Wires (댐핑 와이어를 갖는 새도우 마스크의 해석모델에 대한 실험적 검증)

  • 김성대;김원진;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.460-465
    • /
    • 2002
  • The nonlinear vibration of the CRT shadow mask is analyzed in consideration of the V-shaped tension distribution and the effect of wire impact damping. The reduced order FEM model of the shadow mask is obtained from dynamic condensation for the mass and stiffness matrices. Damping wire is modeled using the lumped parameter method to effectively describe its contact interactions with the shadow mask. The nonlinear contact-impact model is composed of spring and damper elements, of which parameters are determined from the Hertzian contact theory and the restitution coefficient, respectively. The analysis model of the shadow mask with damping wires is experimentally verified through impact tests of shadow masks performed in a vacuum chamber. Using the validated analysis model of the shadow mask with damping wires, the‘design of experiments’technique is applied to search fur the optimal damping wire configuration so that the vibration attenuation of the shadow mask is maximized.

  • PDF