• Title/Summary/Keyword: The contents of heavy metals

Search Result 706, Processing Time 0.029 seconds

우리나라 토양중 토지용도 및 시험방법별 중금속 분포 특성

  • Kim Tae-Seung;Kim Dong-Ho;Yun Jeong-Gi;Park Jong-Gyeom;Jeong Il-Rok;Kim Jong-Ha;Kim Hyeok
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.242-246
    • /
    • 2006
  • Background level of heavy metals In soils (316 points by 15 classifications of land use) was investigated by two test methods, 0.1N HCl(1N HCl for As) extraction and aqua regia extraction methods. The average concentrations of aqua regia extractable heavy metals in soil(n=316) was 6.24(As), 0.25(Cd), 37.99(Cr), 24.10(Cu), 0.04(Hg), 25.68(Pb), 22.59(Ni), 106.11(Zn) mg/kg, respectively. Also the average concentrations of 0.1N HCl extractable heavy metals was 0.06(As), 0.08(Cd), 0.27(Cr), 3.78(Cu), 4.02(Pb), 12.5(Zn), 0.58(Ni) mg/kg, respectively. The ratio of soluble contents and total contents were 2.6%(As), 32.7%(Cd), 0.7%(Cr), 15.7%(Cu), 15.7%(Pb), 2.6%(Ni), 11.8%(Zn), and the correlation coefficient of soluble contents and total contents were 0.26(As), 0.27(Cd), 0.22(Cr), 0.57(Cu), 0.42(Pb), 0.23(Ni), 0.72(Zn).

  • PDF

A Study on the Correlation between Heavy Metal Content of Cement Products and Waste Used in Cement Industry (시멘트 산업에 투입되는 폐기물과 시멘트 제품의 중금속 함유량과의 상관관계 분석연구)

  • Kim, Yong-Jun;Um, Nam-Il;Kim, Woo-Il;Lee, Young-Kee;Kim, Ki-Heon
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.8
    • /
    • pp.721-730
    • /
    • 2018
  • We investigated the effects of heavy metals in cement in the last 3 years and the amount of waste in the cement manufacturing process. The result shows that the average $Cr^{6+}$ content in cement products is controlled at 10 mg/kg. Cu and Pb have lower detection tendency in white cement than in ordinary portland cement. In addition, heavy metals such as Cd show a certain level of detection regardless of the input wastes. Copper slag and phosphate gypsum are the main influencing factors on the heavy metals in cement products. In auxiliary fuels, plastics waste and wood waste are considered to affect heavy metals in cement products. Alternative raw materials are considered to be affected by the alternative raw materials managed as byproducts. In the case of supplementary fuels, auxiliary fuels managed as waste instead of auxiliary fuels managed as byproducts affect the heavy metals in cement. This study examined the input amount without considering the heavy metals in each waste. Therefore, the result may vary in different situations, and further research must be conducted to supplement the findings. However, if the heavy-metal contents in the waste are constant, it can be used as a reference material for the control of heavy metals in cement products.

Study on the chemical forms of heavy metals in the surface sediments of Ulsan Bay

  • Kim, Young-Bok;Jo, Sun-Young;Jeong, Jong-Hak;Lee, Sung-In;Jeong, Gi-Ho
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.2 no.1
    • /
    • pp.69-78
    • /
    • 1998
  • Contents of heavy metals (Cr, Cu, Zn, Cd, and Pb) in the sediments of Ulsan Bay were investigated by the sequential extraction methods that classifies heavy metals into five types of chemical forms: exchangeable, bound to carbonates, bound to Fe-Mn oxides, bound to organic matter and residual. The analytes were determined by using an ICP-MS. Total Cr concentrations in the sediments were in the range of 41.6-96.4, Cu 60.7-680, Zn 189-1954, Cd 33.1-83.4, and Pb 138-567 mg/kg. Results of sequential fractionation indicates that relatively high proportion $(\~44\%)$ of Cu is associated with organic matter A large proportion of Pb is associated with three types of chemical forms: Fe-Mn oxides, organic matter, and residual. There were significant correlation in concentrations between the exchangeable components and total organic carbons. The heavy metals in the residual phase cannot be easily released to the environment since these are bound to the crystal lattice. But, reducible and organic Phases cfn a significant amount of most heavy metals. Therefore. there is potential danger of a substantial amount of metals becoming chemically mobile with environmental changes.

  • PDF

Study on the chemical forms of heavy metals in the surface sediments of Ulsan Bay

  • Young Bok Kim;Sun
    • Journal of Environmental Science International
    • /
    • v.2 no.1
    • /
    • pp.69-78
    • /
    • 1993
  • Contents of heavy metals (Cr, Cu, Zn, Cd, and Pb) in the sediments of Ulsan Bay were investigated by the sequential extraction methods that classifies heavy metals into five types of chemical forms: exchangeable, bound to carbonates, bound to Fe-Mn oxides, bound to organic matter and residual. The analyses were determined by using an ICP-MS. Total Cr concentrations in the sediments were in the range of 41.6-96.4, Cu 60.7-680, Zn 189-1954, Cd 33.1-83.4, and Pb 138-567 mg/kg. Results of sequential fractionation indicates that relatively high proportion ( ~44%) of Cu is associated with organic matter. A large proportion of Pb is associated with three types of chemical forms: Fe-Mn oxides, organic matter, and residual. There were significant correlation in concentrations between the exchangeable components and total organic carbons. The heavy metals In the residual phase cannot be easily released to the environment since these are bound to the crystal lattice. But, reducible and organic Phases con a significant amount of most heavy metals. Therefore, there is Potential dancer of a substantial amount of metals becoming chemically mobile with environmental changes.

  • PDF

Arsenic and heavy metal contamination in the vicinity of the abandoned Dongjung Au-Ag-Cu mine, Korea

  • Chung EunHye;Lee Jin-Soo;Chon Hyo-Taek;Sager Manfred
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.536-539
    • /
    • 2003
  • The Dongjung Au-Ag-Cu mine area was seriously contaminated with As and heavy metals-Cd, Cu, Hg, Mn, Pb and Zn etc. Those elements were highly accumulated in plants grown at farmland as well as farmland soil. Stream waters and groundwater which has been used as drinking water around the mine site contain high levels of heavy metals, especially As. As a result of human health risk assessment using EHS(Extraction of Heavy metals in Stomach and Small intestine) test for bioaccessible contents of heavy metals, there is a potential of cancer and adverse effects on human health for the residents of the mine area.

  • PDF

A Study on Soil Clay Minerals and the Distribution of Heavy Metals in Soils Derived from Black Shale and Black Slate in Dukpyoung Area (충북 괴산 덕평리 일대 흑색셰일 및 흑색점판암기원 토양의 점토광물 조성 및 중금속원소의 분산)

  • Chon, Chul-Min;Moon, Hi-Soo;Choi, Sun Kyung;Woo, Nam Chil
    • Economic and Environmental Geology
    • /
    • v.30 no.6
    • /
    • pp.567-586
    • /
    • 1997
  • Concentrations of several heavy metals in soils derived from black shale and slate have been reported to be higher than the average concentrations in non-polluted soils. This study describes and characterizes soil minerals, and investigates the distribution of heavy metals in soils, and then examines their relationship. Soils in the study area are mainly consist of guartz and feldspars with minor amount of kaolin, illite, vermiculite, chlorite and illite-vermiculite interstratified minerals. Mineral compositions are similar in mountain-, farmland-, and paddy-soils. The residual soils derived from sandy phyllites contain less illites than those from black shale and black slate. Heavy metals appear to be more concentrated in soils than in rocks. The concentrate ratios in soils to rocks ranges 1.1 times for Cr, 2 for Cu, 1.4 for Ni. The contour maps of Cd, Zn, Pb, Cu contents using 0.43N $HNO_3$-extraction imply that these elements are highly concentrated in the soils near the past uranium exploration region, coal seams, black slate beds and tailings than other parts of the study area. The proportions of the day in most soils are less than 10%. In spite of small proportions of the clay, the concentrations of heavy metals from clay fractions to the total concentrations are high: 1~2.4 times for Co, 1.4~2.5 for Cu, 1.2~2.6 for Ni, 1~5 for Pb, 1~2.7 for Zn and 1.6~1.8 for Cr and V. The contents of organic carbons in clay fractions are also 1.5~3.9 times higher than in silt and sand fractions. Cu, Pb and organic carbons show positive relationship in all size fractions. In the size-fractionated soil profile samples, the contents of heavy metals and organic carbons show analogous trends with depth. For the clay fractions of soil profile samples, the contents of heavy metals with depth have analogous trends to abundances of vermiculites, which have the high CEC in main clay minerals.

  • PDF

Extractable Heavy Metals in Phosphogypsum

  • Chung, Jong-Bae;Cho, Hyun-Jong;Jin, Sun-Jae
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.3
    • /
    • pp.223-228
    • /
    • 2002
  • In addition to supplying the essential elements, Ca and S, phosphogypsum can have profound effect on both the physical and chemical properties of certain soils. However, no widespread use of by-product phosphogypsum will be made unless such uses pose no threat to the public health and soil contamination. In this study, the extractability of As, Cd, Cu, and Pb with water and DTPA solution from phosphogypsum samples of pH 3, 5, and 7 were investigated to estimate the availability of those metals. Contents of water extractable metals in ohosphogypsum were less than 5 mg/kg for all the heavy metals investigated. The extractability of metals in DTPA solution was not quite different but a little higher in comparison to the water extraction. And the extractability was decreased as the pH of phosphogypsum increased. In the phosphogypsum of pH 7, amounts of water extractable metals were nearly zero. There was no significant difference in the amount of extractable metals during the extraction period of 5 weeks. The length of extraction time did not affect heavy metal extractability. Therefore there may be small fractions of easily soluble or extractable forms of metals in the phosphogypsum and most of the metals would be present in very insoluble forms. These results suggest that the application of phosphogypsum at appropriate rates on agricultural lands appears of no concern in terms of hazardous element contamination in soil.

Content of Benzo(a)pvrene and Heavy Metals and Physico-chemical Properties of Turfgrass Playground Soil in Elementary School of Jeollabuk-do (천연잔디시공 학교운동장 토양중 벤조피렌 및 중금속 오염물질의 함량 - 전라북도 초등학교를 중심으로 -)

  • Park, Bong-Ju;Kim, Sei-Cheon;Cho, Jae-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.3
    • /
    • pp.39-49
    • /
    • 2008
  • A study was carried out on the physico-chemical properties of soil and content of heavy metals and benzo(a)pyrene that might have been introduced through by-product fertilizers or air pollution to growing turfgrass at natural turfgrass playgrounds in elementary schools located at the western coast and eastern mountain areas in Jeollabuk-do, Korea. The soil of turfgrass playgrounds is composed of loamy sand, and the CEC and organic matters were very low. Compared to agricultural land in Korea, the concentrations of nitrogen, phosphorus and potassium were very low, requiring control in terms of nutrients. The contents of total and fraction heavy metals in soil were found to be background level. The reason may lie in the fact that unpolluted sand soil or sand was used to construct the foundation for the natural grass playground in the first place. However, any change in oxidation-reduction conditions or acceleration of decomposition of organic compounds may release some heavy metals from the soil and be transformed into forms that may be easily absorbed by plants or grass. It is believed that sustained monitoring and environment impact assessments should be carried out. The contents of benzo(a)pyrene in soil showed an average 0.60ng/g with a range between 0.06 to 1.47ng/g. The detected contents were found as background level.

Studies on the Pollution of Heavy Metal in Soil and Vegetable (土壤 및 菜蔬中의 重金屬汚染에 關한 硏究)

  • Hong, Sa Uk;Park, Seung Hee
    • Journal of Environmental Health Sciences
    • /
    • v.10 no.1
    • /
    • pp.33-45
    • /
    • 1984
  • In order to investigate the pollution of heavy metal in soil, chinese cabbage and radish collected from Singal interchange (highway area), Anyang stream, Jungryang stream (stream basin) and Chunchun dong, Suweon (non-polluted area), this study was carried out from July to October in 1983. The contents of cadmium, copper, lead, and zinc were determined by atomic absorption spectrqphotometry. Generally in soil, the contents of heavy metals in highway area were lower than that in Anyang stream and Jungryang stream, but higher than that in non-polluted area. (Chunchun dong, Suweon). The vegetable samples of highway area were more polluted compared with that of Chunchun dong, Suweon. The contents of heavy metals in radish were higher than that of chinese cabbage and radish leaves were more polluted than roots.

  • PDF

Effects of Fly Ash on Heavy Metal Contents in Percolated Water of Paddy Soil (석탄회 시용이 논 토양수중의 중금속성분 용출에 미치는 영향)

  • Kim, Yong Woong;Yoon, Chung Han;Shin, Bang Sup;Kim, Kwang Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.3
    • /
    • pp.236-242
    • /
    • 1996
  • This study was conducted to investigate the changes of heavy metals in percolated water of paddy soil in which rice was cultivated in conditions of 0%, 5%. 30% addition of bituminous and anthracite fly ash respectively. In cultivated plot, the contents of Fe in percolated water increased gradually during the cultivation. But there was no sharp difference of Fe contents in fly ash treated plots. The contents of Mn in percolated water increased gradually during the cultivation and was high in the cultivated plot. But difference in the contents of Mn among plots not clear. The contents of Zn in percolated water was highest during 20-25 days in the cultivation, thereafter decreased gradually. The fly ash did not cause to increase the contents of Zn in percolated water. The contents of Cu in percolated water decreased through the cultivation. Fly ash treatment did not cause to increase the contents of Cu in percolated water. The contents of Pb in percolated water decreased gradually over the cultivation. Fly ash treatment did not largely influence to Pb percolation. In mid-July. Pb did not almost appeared in percolated water. The contents of Cd was highest about 15 days of the transplant, thereafter decreased gradually. After 40 day of the cultivation, leach of Cd stopped. When fly ashes were applied in paddy soil, the contents of heavy metals in percolated water was not so much compared with control plot. It seems that originally low contents of heavy metals in fly ash and decrease in solubility of heavy metals in a relatively high soil pH make it possible to use fly ash as a soil conditioner.

  • PDF