• Title/Summary/Keyword: The amount of shearing

Search Result 42, Processing Time 0.019 seconds

Shape Design of Shearing Die for the Chassis Part with the Coupled Analysis of Shear and Die Structure (전단-구조연계해석을 이용한 섀시부품 전단금형의 형상설계)

  • Kim, S.H.
    • Transactions of Materials Processing
    • /
    • v.31 no.5
    • /
    • pp.261-266
    • /
    • 2022
  • To reduce the weight of the vehicle, the application of the high strength steel sheets to chassis parts is increased. High forming load is induced during the shearing process of steel chassis parts made of high strength steel, and the possibility of an eccentric load is increased depending on the product seating condition on the die, which decreases the stability and lifespan of the die. In this paper, a three-dimensional finite element analysis with the continuum element was conducted using the damage theory for the cam-trimming process of the front lower arm. The structural analysis of the trimming die was performed with the forming load result obtained from the analysis, and the amount of deflection and the stress distribution of the die during the shearing process were evaluated for the confirmation of the tool stability. The shape of the weak region of the die was modified according to structural analysis and then the stability was confirmed with the finite element analysis. The analysis result showed that the possibility of tool failure during cam-trimming process was remarkably reduced, and the reliability of the proposed modified design was validated.

Effect of Shearing Speed and UBMs on High Speed Shear Properties of Sn3.0Ag0.5Cu Solder Ball (Sn3.0Ag0.5Cu 솔더 볼의 고속 전단특성에 미치는전단속도 및 UBM층의 영향)

  • Jung, Do-Hyun;Lee, Wang-Gu;Jung, Jae Pil
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.635-641
    • /
    • 2011
  • The effect of high shear speed on shear force, shear energy and fracture surface was investigated for the solder joint of a $Sn-_{3.0}Ag-_{0.5}Cu$ ball. For both ENIG and OSP pads, the shear force increased with an increase in shearing speed to 0.3 m/s. However, for an ENEPIG pad, the shear force increased with an increase in shear speed to 0.6 m/s and kept almost constant afterward. The shear energy decreased with an increase in shearing speed for ENIG and OSP pads. For the ENEPIG pad, however, the shear energy almost remained constant in a shearing speed range 0.3-3.0 m/s. The fracture mode analysis revealed that the amount of brittle fracture for the ENIG and the OSP pads increased with shearing speed, and a complete brittle fracture appeared at 1.0 m/s for ENIG and 2.0 m/s for OSP. However, the ENEPIG pad showed only a ductile fracture until 0.25 m/s, and a full brittle fracture didn't occur up to 3.0 m/s. The fracture mode matched well with the shear energy. The results from the high speed shear test of SAC305 were similar to those of SAC105.

Palaeomagnetism of Tertiary Basins in Southern Korea : 3. Chongja-Ulsan Basins and its Vicinities (남한 제3기 분지지역에 대한 고자기 연구 : 3. 정자-울산분지와 그 일원)

  • Son, Moon;Kang, Hee-Cheol;Kim, In-Soo
    • Economic and Environmental Geology
    • /
    • v.29 no.4
    • /
    • pp.509-522
    • /
    • 1996
  • A total of 460 palaeomagnetic samples was collected from the Tertiary Chongja-Ulsan basins and surrounding area in the southeastern part of Korean peninsula. All samples were stepwise demagnetized by either alternating field or thermal method. It was found that most sample-sites have ChRM declination which has been rotated clockwise from the north-south reference direction of Tertiary East Asia, although other two extrusive sample-sites within the Chongja sedimentary basin show counterclockwise rotation of ChRM declination. Fold tests for the site-mean ChRMs of the latter two sites reveal insignificant result and negative result with 95% confidence level, respectively. The amount of the clockwise deflection of declination varies from about $20^{\circ}$ upto about $80^{\circ}$ according to the block to which each sample-site belongs. The amount of the counterclockwise deflection is about $20^{\circ}$. It is concluded that the clockwise ChRM rotation has been caused by dextral simple shearing accompanied by NNW-SSE spreading of the East Sea which has been active until about 16Ma, and that the counterclockwise rotation is a result of sinistral simple shearing associated with WNW-ESE contraction in the Korean Strait-SW Japan region at about 15 Ma.

  • PDF

Analysis of an Inside Crack of Pressure Pipeline Using ESPI and Shearography

  • Kim, Kyung-Suk;Kang, Ki-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.6
    • /
    • pp.643-648
    • /
    • 2002
  • In this study, shearography and ESPI have been used for quantitative analysis of an inside crack of pipeline and both of them appeared suitable to qualitatively detect inside crack. However, shearography needs several effective factors including the amount of shearing, shearing direction and induced load for the quantitative evaluation of the inside crack. In this study, the factors were optimized for the quantitative analysis and the site of cracks has been determined. Although the effective factors in shearography has been optimized, it is difficult to determine the factors exactly because they are related to the details of tracks. On the other hand, ESPI is independent on the details of a crack and only the induced load plays an important role. The out-of-plane displacement was measured under the optimized load and the measured were numerically differentiated, which resulted in an equivalent to the shearogram. The size of cracks can be determined quantitatively without any detail of a crack.

Finite Elerllent Analysis of the Pull-out Test

  • Yi, Chang-Tok
    • Geotechnical Engineering
    • /
    • v.12 no.3
    • /
    • pp.49-62
    • /
    • 1996
  • The pull-out test is a common test for detemining the strength and deformation parameters between reinforcement and soil inl the design of reinforced earth structures. It is often assumed in the interpretation of the results from the test that the mobilization of shear strength along the reinforcement is uniform. The progressive shearing at the soil-reinforcement interface during the pull-out test often leads to incorrect calculation of the shear displacement response between the reinforcement and the soil. To investigate the effect of progressive shearing during the calculation of the shear stiffness of the soil-reinforcement interface, the finite element method is used to simulate the pullout test. The reinforcement, soil and interface behaviors are modeled by rosing linear and non-linear constitutive models. Shear stiffnesses are calculated by uaiHg conventional methods. It is found that there are considerable discrepancies 13etween the calculated shear stiffnesses and the correct stiffnesses which are used in the finite element analysis. The amount of error depends on the relative stiffness between reinforcement and soil and the size of the specimen being analyzed. The finite element results are also compared with the observed response from laboratory experiments. A revised interpretation of the pull-out test results is discussed.

  • PDF

Fundamental Relationship Between Extensibility of Stretch Fabric and It's Pressure (스트레치 직물의 재질특성에 따른 신장율과 압력과의 상관관계 연구)

  • 이전숙
    • Journal of the Korean Home Economics Association
    • /
    • v.30 no.1
    • /
    • pp.35-47
    • /
    • 1992
  • The objective of this research was to determine whether the pressure on the cylinder by stretch fabric could be related by the size of cylinder, the amount of extension, and the properties of the fabric. The results were as follows : 1. There were linear relationships between the pressure of the fabric exerts on the cylinder and percentage of extension of the fabric, the radius of the cylinder, the tensile stress of the fabric, and the bending and shearing properties of the fabric. 2. From the results above, 4 regression equations from which the pressure could be estimated were derived by regression analysis. The equations were as follows : 1) P=a/Rb 2) P=c+ds 3) P=e+fSt 4) P=g+hB P : Pressure, R : Radius of cylinder, S : Percentage of Stretch, St : Tensile stress, B : Bending property.

  • PDF

The Reapperarance of Relative Density by the Multiple Sieving Pluviation Method (다중체 낙하법에 의한 상대밀도 재현에 관한 연구)

  • 주재우;곽정민
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.265-272
    • /
    • 1994
  • The relative density seems to be important as a factor of controlling the physical properties in the case of cohesionless soil ground as sand. Therefore, the study is more important about the method for reappearing the same relative density when the specimen of shearing test is to be produced or the model test of ground is to be made. In this study, the apparatus making use of the multiple sieving pluviation method - one of the reappearance of relative density - could be made. Using this apparatus, tests were practiced varying the factors such as the size of sieve mesh and the number of sieve, the amount of falling discharge, the falling height etc. about the standard sand in Jumunjin and Hadong sand. When laboratory test is performed by the cohensionless soil , it presents the method for reappearing of the relative density in field.

  • PDF

Strain Analysis by Dual-beam Shearography (미소변형 해석을 위한 Dual-beam Shearography)

  • 김경석;최태호;김성식;최정석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.251-254
    • /
    • 2003
  • In recent years, shearogrpahy has significantly improved capabilities In the areas of unbend and separation detection in tires. Although shearography has many advantages fur qualitative evaluation, the technique remains the problem of quantitative analysis of inside defects, because shearography needs several effective factors including the amount of shearing, shearine direction and induced load, which exist as barrier for the quantitative analysis of inside defects. Since the factors are highly dependent on inspectors skill and also affect the in-situ workability. The factors were optimized and the size of cracks inside of pipeline and tire has been quantitatively determined.

  • PDF

Steel-CFRP composite and their shear response as vertical stirrup in beams

  • Uriayer, Faris A.;Alam, Mehtab
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1145-1160
    • /
    • 2015
  • An experimental study was conducted for the effectiveness of steel-CFRP composite (CFRP laminates sandwiched between two steel strips) as stirrups in concrete beam to carry shearing force and comparison was made with conventional steel bar stirrups. A total numbers of 8 concrete beams were tested under four point loads. Each beam measured 1,600 mm long, 160 mm width and 240 mm depth. The beams were composed of same grade of concrete, with same amount of flexural steel but different shear reinforcements. The main variables include, type of stirrups (shape of stirrups and number of CFRP layers used in each stirrup) and number of stirrups used in shear spans. After getting on an excellent closeness between the values of ultimate shear resistance and ultimate tensile load of steel-CFRP stirrups, it could be concluded that the steel-CFRP stirrups represent the effective solution of premature failure of FRP stirrups at the bends.

Influence of Xanthan, Emulsification Temperature, and Environmental Stresses on the Preparation of Water-in-Corn Oil Emulsions Droplets Coated by Polyglycerol Polyricinoleate

  • Surh, Jeong-Hee
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.299-306
    • /
    • 2009
  • The purpose of this study was to prepare stable water-in-corn oil (W/O) emulsion droplets coated by polyglycerol polyricinoleate (PGPR). W/O emulsions (20 wt% aqueous phase, 80 wt% oil phase containing 8 wt% PGPR) were produced by high pressure homogenization (Emulsions 1), however, appreciable amount of relatively large water droplets (d>$10{\mu}m$) were found. To facilitate droplet disruption, viscosity of each phase was adjusted: (i) increased the viscosity of aqueous phase by adding 0.1 wt% xanthan (Emulsions 2); (ii) decreased the viscosity of oil phase and aqueous phase by heating them separately at $50^{\circ}C$ for 1 hr immediately before emulsification (Emulsions 3). Homogenizing at the elevated temperature clearly led to a smaller water droplet size, whereas xanthan neither improved nor adversely affected on the microstructures of the emulsions. In addition, the Emulsions 3 had good stability to droplet aggregation under shearing stress, thermal processing, and long term storage.