• Title/Summary/Keyword: The Yellow Sea

Search Result 1,313, Processing Time 0.025 seconds

A Systematic Study on the Marine Sponges from the South Sea and the Yellow Sea of Korea (한국 남해 및 서해 연안 해산 해면류의 계통분류학적 연구)

  • 심정자
    • Animal Systematics, Evolution and Diversity
    • /
    • v.1 no.1_2
    • /
    • pp.21-30
    • /
    • 1985
  • 본인은 1984년 6월부터1985년 5월까지 서해연안(작약도, 대천, 안면도, 안흥)과 남해연안의 삼천포를 중심으로 한 부근섬(신수도, 늑도, 비진도, 충무) 및 거제도, 제주도 등지에서 채집된 재료 90여점과 그간 미해결로 보류되어있던 기존 표본들을 동정분류한 결과 26 종의 기록종과 3 종의 한국 미기록종(Spongia officienalis , S. zimmocca, Tedania Tublifera)이 밝혀졌다. 기록종 가운데 Esperiopsis uncigera 와 Hymeniacidon sinapium은 재검토되었다.

  • PDF

Biochemical Composition of the Wild and Cultured Yellow Croaker (Larimichthys polyactis) in Korea (자연산과 양식산 참조기의 식품학적 품질평가)

  • Kang, Hee-Woong;Shim, Kil-Bo;Cho, Young-Je;Kang, Duk-Young;Cho, Kee-Chae;Kim, Jong-Hwa;Park, Kwang-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.1
    • /
    • pp.18-24
    • /
    • 2010
  • The biochemical composition of wild and cultured yellow croaker, Larimichthys polyactis, was analyzed in this study. The moisture contents in wild and cultured yellow croaker was high: $75.2{\pm}1.60%$ and $79.5{\pm}1.95%$, respectively. The crude lipid contents of wild and cultured yellow croaker were low; moreover, the crude protein and ash contents did nol differ significantly (P>0.05). The total amino acid content of wild and cultured yellow croaker did not differ significantly; however, the cystine content of wild yellow croaker was higher than than of cultured yellow croaker. The essential /nonessential amino acid (E/NE) ratio in wild and cultured yellow croaker was $0.76{\pm}0.01$ and $0.77{\pm}0.02$, respectively. The free amino acid and extractive nitrogen contents of cultured yellow croaker were high and differed significantly. The water soluble vitamin ($B_1$, $B_2$, $B_6$, $B_{12}$, C and folate) and fat-soluble vitamin (A and E) contents did not differ significantly. expect for niacin. The niacin content of cultured yellow croaker was higher than that of wild yellow croaker. The fatty acid composition of wild and cultured yellow croaker did not differ significantly The sodium, magnesium, and copper contents in wild yellow croaker were relatively low. In comparison, the calcium, phosphorus and iron contents in cultured yellow croaker were relatively high. Overall, the biochemical composition of wild and cultured yellow croaker did not differ significantly.

Distribution of Heavy Metal Concentrations in Surface Sediments of the eastern Yellow Sea (황해 동부해역 표층퇴적물의 중금속 농도 분포)

  • SUN, CHUL-IN;PARK, GEON-WOO;PARK, HYEON-SIL;PARK, JUN KUN;KIM, SEONG GIL;CHOI, MAN SIK
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.23 no.4
    • /
    • pp.179-191
    • /
    • 2018
  • In order to determine the distribution characteristics of the heavy metals in surface sediments of the eastern Yellow Sea, heavy metal concentrations (Cu, Pb, Zn, Cd, Cr, Mn, As, Ni, Co, Li, Fe and Al) together with grain size and total organic carbon (TOC), were analyzed. The concentrations of all heavy metals, with the exception of Pb, Mn and As in some stations, were relatively high in the central area of the Yellow Sea and tended to decrease toward the Korean coast. A significant relationship between grain size and concentrations of heavy metals suggested that they were mostly controlled by quartz dilution effect. However, at some stations, Pb, Mn and As exhibited different distribution patterns. For Pb, the differences were caused by petrogenetic influences (feldspar) in coarse-grained sediments. In the case of Mn, biogenetic influences ($CaCO_3$) affected distribution patterns. As was distributed differently because of the existence of a heavy mineral (pyrite). A comparison with previous data (collected in 2000) shows that the heavy metal concentration in the eastern Yellow Sea has not increased over the past fifteen years. The sedimentary environment of dumping sites in the Yellow Sea has not been significantly improved during this period. The results of the pollution assessment revealed that the concentrations of heavy metals in the study area were lower than lower criteria (TEL, MSQ-1) in Korean and Chinese sediment quality guidelines. The enrichment factor (EF), geo-accumulation index ($I_{geo}$) and ecological risk index (ERI) of Cu, Pb, Zn and Cr were higher in the central area of the Yellow Sea.

Characteristics and Provenance of Heavy Minerals in the Yellow Sea and Northern East China Sea (황해 및 동중국해 북부의 중광물 특성과 기원)

  • Koo, Hyo Jin;Lee, Bu Yeong;Cho, Hyen Goo
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.505-515
    • /
    • 2020
  • The Yellow Sea and northern East China Sea contain a transgressive sand layer. Numerous sedimentary studies have been carried out in these sand deposits using seismic exploration and core sediment techniques, but few mineralogical studies have been reported. The major purposes of this study are to describe the distributions of heavy minerals throughout the Yellow sea and northern East China Sea and to identify the provenance of coarse sediments using the mineral chemistry. Eight heavy mineral species were identified in the study area (epidote, amphibole, garnet, zircon, sphene, rutile, apatite, and monazite). The study region was divided into six areas (areas A to F) based on heavy mineral distributions and sampling locations. In mineral chemistry, the amphiboles present are classified as edenite and hornblende in the calcic amphibole group, and the garnets are identified primarily as almandine in the pyralspite group. A combined data set of heavy mineral distributions and mineral chemistry showed clear differentiation of the characteristics of the six classified areas, enabling determination of provenance and sedimentary environment. Area A and B in the eastern Yellow Sea were originated from the Korean peninsula, and these regions showed different heavy mineral characteristics by tidal current and coastal current. In addition, monazite was only found in the area B and could be used as an indicator from the southwestern Korean peninsula. Area D and E in the western Yellow Sea showed the characteristics of sediments originating from the Huanghe, and sediment in the area E was derived from the Changjiang. Area C in the northern East China Sea appeared to have Changjiang-origin sediment, and abundant apatite indicated that area C was formed close to the Last Glacial Maximum.

On the Transportation Efficiency of Barge System in Kyongin Canal (경인운하용 바아지시스템의 수송효율에 관한 연구)

  • J.W. Lee;Y.H. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.1
    • /
    • pp.27-36
    • /
    • 2001
  • Recently, the coastal transportation of the Yellow Sea is increasing due to the vastly expanding trade among countries surrounding the Yellow Sea. As the 50 percentages of the total domestic container transportation are concentrated on the National Capital region, the traffic congestion in the key land transportation routes brings about the weakening of the global competitiveness. In this study, the efficient barge systems for sea-river shipping of the Han-river, the Kyongin canal and coastal ways of the Yellow Sea are considered based on the criterion of canal and cargo volumes. To find the efficient barge system of the model barge in the Kyongin canal. the transport efficiency factor and transport ability of each barge system with the variation of sailing speed and length are calculated.

  • PDF

Tracing the trajectory of pelagic Sargassum using satellite monitoring and Lagrangian transport simulations in the East China Sea and Yellow Sea

  • Kwon, Kyungman;Choi, Byoung-Ju;Kim, Kwang Young;Kim, Keunyong
    • ALGAE
    • /
    • v.34 no.4
    • /
    • pp.315-326
    • /
    • 2019
  • Northeastward drifts of massive Sargassum patches were observed in the East China Sea (ECS) and Yellow Sea (YS) by the Geostationary Ocean Color Imager (GOCI) in May 2017. Coverage of the brown macroalgae patches was the largest ever recorded in the ECS and YS. Three-dimensional circulation modeling and Lagrangian particle tracking simulations were conducted to reproduce drifting trajectories of the macroalgae patches. The trajectories of the macroalgae patches were controlled by winds as well as surface currents. A windage (leeway) factor of 1% was chosen based on sensitivity simulations. Southerly winds in May 2017 contributed to farther northward intrusion of the brown macroalgae into the YS. Although satellite observation and numerical modeling have their own limitations and associated uncertainties, the two methods can be combined to find the best estimate of Sargassum patch trajectories. When satellites were unable to capture all patches because of clouds and sea fog in the ECS and YS, the Lagrangian particle tracking model helped to track and restore the missing patches in satellite images. This study suggests that satellite monitoring and numerical modeling are complementary to ensure accurate tracking of macroalgae patches in the ECS and YS.

Direct Observation of Radiative Flux in the Southern Yellow Sea

  • Lu, Lian-Gang;Yu, Fei;Diao, Xinyuan;Guo, Jingsong;Wang, Huiwu;Wei, Chuanjie
    • Ocean Science Journal
    • /
    • v.43 no.2
    • /
    • pp.115-126
    • /
    • 2008
  • Direct measurements of four radiative components at air-sea boundary layer were conducted in the southern Yellow Sea during three cruises (seasons) in 2007. Simultaneous observations of meteorological (cloud cover, air temperature and humidity) and oceanographic (sea surface temperature) parameters were carried out. Observational results of radiative fluxes and meteorological and oceanographic parameters are presented. Mean diurnal cycles of four radiative components, net radiation, and sea surface albedo are calculated to achieve averages in different seasons. Net radiative fluxes in three seasons (winter, spring, autumn) are 8, 146, $60\;W/m^2$, respectively. Comparisons between the observed radiative fluxes and those estimated with formulas are taken.

Sea-air Energy Exchange in the Eastern Yellow Sea (한국서해의 해양과 대기간 에너지의 효과)

  • Lee, Dong-Young;Chang, Sun-Duck
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.12 no.2
    • /
    • pp.37-42
    • /
    • 1976
  • Each term of heat badget equation in the eastern Yellow Sea was calculated and the variation in relation to meteorological condition was shown for the period from September 1973 to February 1974, At Mal-do near Gunsan the maximum heat exchange occurred at the last ten days of December (--522 1y/day), while at Sunmi-do near Incheon it occurred at the middle ten days of November (--665 1y /day), The contribution of the sensible heat to total heat exchange increased rapidly, while the effect of cloudiness decreased to be negligible in winter. The values of the heat exchange fluctuated considerably with the periodic occurrence of the cold Siberiaa air mass. The mean evaporation heat estimated indirectly from the aerological data was 32 ly/day at the northern part and 269 ly/dlY at the southern part of the Yellow Sea in December 1973.

  • PDF

Water Mass Distribution and Seasonal Circulation Northwest of Cheju Island in 1994

  • PANG Ig-Chan;RHO Hong-Kil;LEE Jae-Hak;LIE Heung-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.6
    • /
    • pp.862-875
    • /
    • 1996
  • The CTD data observed in the sea northwest of Cheju Island have been analyzed to figure out the seasonal circulation around Cheju Island. Warm and saline waters flow into the Yellow Sea through the middle region of the Yellow Sea in winter and along the west coast of Korean Peninsula in summer. On the other hand, cold and less saline waters flow out of the Yellow Sea through the middle region in summer and along the west coast of Korean Peninsula in winter. These flows make the seasonal circulation around Cheju Island. As dynamics, the monsoon wind and the variation of Kuroshio transport have been suggested. Comparing the observational result, the circulation driven by the variation of Kuroshio transport is strengthened by monsoon winds in the numerical model.

  • PDF

Distribution of Suspended Particulate Matters in the East China Sea, Southern Yellow Sea and South Sea of Korea During the Winter Season

  • Choi, Jin-Yong;Kim, Seok-Yun;Kang, Hyo-Jin
    • Journal of the korean society of oceanography
    • /
    • v.39 no.4
    • /
    • pp.212-221
    • /
    • 2004
  • Concentrations of suspended particulate matters (SPM) and their distribution patterns were monitored three times in the East China Sea during the winter season in 1998 and 1999. SPM concentrations showed significant temporal variations controlled by the atmospheric conditions and sea states. In coastal area, SPM values were about 10-20 mg/l in fair weather conditions, but exceeded 100mg/l during the storm periods. Turbid waters were distributed widespread in the continental shelf of the East China Sea and the coastal area of the Korean Peninsula, and these two areas were connected along a NE-SW direction. The distribution patterns of turbid waters were interpreted as representing the transport behavior of suspended matter. Although the primary source of inner shelf mud deposits of Korea seems to be the Korean Peninsula, contribution from the East China Sea to the coastal area of Korea increases especially during the winter season.