• 제목/요약/키워드: The Transient Energy Function

검색결과 107건 처리시간 0.03초

안정도 지수와 에너지 마진을 이용한 불안정 발전기의 clustering 법 (A Novel Method for Clustering Critical Generator by using Stability Indices and Energy Margin)

  • 장동환;정연재;전영환;남해곤
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권9호
    • /
    • pp.441-448
    • /
    • 2005
  • On-line dynamic security assessment is becoming more and more important for the stable operation of power systems as load level increases. The necessity is getting apparent under Electricity Market environments, as operation of power system is exposed to more various operating conditions. For on-line dynamic security assessment, fast transient stability analysis tool is required for contingency selection. The TEF(Transient Energy Function) method is a good candidate for this purpose. The clustering of critical generators is crucial for the precise and fast calculation of energy margin. In this paper, we propose a new method for fast decision of mode of instability by using stability indices. Case study shows very promising results.

에너지 함수 방법에 의한 계통의 과도 안정도 해석시 불안정 모드 선정에 관한 연구 (A Study on the Selection of MOI in the Transient Energy Function Method for Power System Transient Stability)

  • 오태규;전영환;권태원;추진부;이근준;함완균
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1990년도 추계학술대회 논문집 학회본부
    • /
    • pp.256-259
    • /
    • 1990
  • In this paper, the selection method of MOI was modified and was applied to KEPCO power system. The results are better than that obtained from the previous method and compare well with those obtained by time simulation.

  • PDF

Generation Rescheduling Based on Energy Margin Sensitivity for Transient Stability Enhancement

  • Kim, Kyu-Ho;Rhee, Sang-Bong;Hwang, Kab-Ju;Song, Kyung-Bin;Lee, Kwang Y.
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권1호
    • /
    • pp.20-28
    • /
    • 2016
  • This paper presents a generation rescheduling method for the enhancement of transient stability in power systems. The priority and the candidate generators for rescheduling are calculated by using the energy margin sensitivity. The generation rescheduling formulates the Lagrangian function with the fuel cost and emission such as NOx and SOx from power plants. The generation rescheduling searches for the solution that minimizes the Lagrangian function by using the Newton’s approach. While the Pareto optimum in the fuel cost and emission minimization has a drawback of finding a number of non-dominated solutions, the proposed approach can explore the non-inferior solutions of the multiobjective optimization problem more efficiently. The method proposed is applied to a 4-machine 6-bus system to demonstrate its effectiveness.

퍼지를 이용한 실시간 안정도 판별과 에너지 마진의 추정 (Real-time Stability Assessment and Energy Margin Estimation using Fuzzy)

  • 최원찬;김수남;유석구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 C
    • /
    • pp.1239-1241
    • /
    • 1999
  • In this paper, we propose real time transient stability assessment and energy margin estimation using fuzzy approximate reasoning. The proposed method used rotor angle, kinetic energy and acceleration power of generators at clearing time as fuzzy input. In order to calculate energy margin in transient energy function (TEF), we obtained controlling unstable equilibrium point (UEP) using mode of disturbance procedure (MOD). The proposed algorithm is tested on 4-machine, 6-bus, 7-line power system to prove of effectiveness.

  • PDF

과도안정도 에너지 마진 향상을 위한 다기의 TCSC 적정량 실시간 산정 (Real-Time Estimation of Multi TCSC Reference Quantity for Improvement of Transient Stability Energy Margin)

  • 김수남;유석구
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제50권10호
    • /
    • pp.454-463
    • /
    • 2001
  • This paper presents a method for real-time estimation of TCSC reference quantity in order to enhance the power system transient stability energy margin using artificial neural network in multi-machine system. This paper has the three parts, the first part is to determine the lines to be installed by TCSC. The seconds is to estimate the energy margin using by ANN. To get the critical energy for training, we use the potential energy boundary surface(PEBS) method which is one of the transient energy function(TEF) method. And the last is to determine the TCSC reference quantity. In order to make training data for ANN in this step, we use genetic algorithm(GA). The proposed method is applied to 39-bus, 46-line. 10-machine model system to show its effectiveness.

  • PDF

Derivation of Damping-reflected Energy Functions in COI Formulation for Direct Analysis of Transient Stability

  • Park, Byoung-Kon;Kwon, Yong-Jun;Lee, Jong-Gi;Moon, Young-Hyun
    • KIEE International Transactions on Power Engineering
    • /
    • 제4A권3호
    • /
    • pp.134-140
    • /
    • 2004
  • This paper presents an improved group of energy functions reflecting generator damping effects for multi-machine power systems by using Center of Inertia (COI) formulation as an extension of the previous work. Since rotor angles at the Stable Equilibrium Point (SEP) of post-fault systems are generally calculated in COI, system transient energy can be found without assumption of infinite or slack bus, which is a crucial drawback of the absolute rotor angle frame approach. The developed energy functions have a structure preserving property with which it is very flexible to incorporate various models of power system components, especially various load and generator models. The proposed damping-reflected energy functions are applied to the Potential Energy Boundary Surface (PEBS) method, one of the direct methods. Numerical simulation of WSCC 9-bus shows that conservativeness of the PEBS method can be considerably reduced.

선로저항을 반영하는 에너지함수 유도를 위한 등가시스템 기법의 개발 (The Development of Equivalent System Technique for Deriving an Energy Function Reflecting Transfer Conductances)

  • 문영현;조병훈;노태훈;최병곤
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권10호
    • /
    • pp.1175-1182
    • /
    • 1999
  • This paper shows that a well-defined energy function can be developed to reflect the transfer conductances for multi-machine power systems under an assumption that all transmission lines have uniform R/X rations. The energy function is derived by introducing a pure reactive equivalent system for the given system. In this study, a static energy function reflecting transfer conductances is also derived as well as the transient energy function. The proposed static energy function is applied to voltage stability analysis and tested for various sample systems. The test results show that the accuracy of voltage stability analysis can be considerable improved by reflecting transfer conductances into the energy function.

  • PDF

과도 안정도를 고려한 가용송전용량(ATC) 계산에 관한 연구 (A Study on The Available Transfer Capability(ATC) with Transient Stability Constraints)

  • 김양일;정성원;김재현
    • 전기학회논문지
    • /
    • 제58권3호
    • /
    • pp.437-443
    • /
    • 2009
  • In recent years, electric power systems have been experiencing a rapid change due to the increasing electricity market. For the effective use of power system under the deregulated environment, it is important to make a fast and accurate calculation of the maximum available transfer capability (ATC) from a supply point to a demand point. In this paper, the purpose of this research is to calculate ATC fast and accurately for securing the stability of system and raising the efficiency as a result of anticipating transmission congestion according to transmission open access progressed in the future under the regulated environment of electricity market. In this paper, a study utilized a relation of the potential energy and energy function by which calculated CCT and then utilized a relation of PEBS for transient stability ATC calculation. In this paper, ATC was calculated as RPF and Energy Function method and calculation results of each method was compared. Contingence ranking method decided the weak bus by the Eigenvalues of Jacobian matrix and overloading branches by PI-index. As a result, a study proved the fast and accurate ATC calculation method considering transient stability suggested in this paper. Through the case study using New England 39 bus system, it is confirmed that the proposed method can be used for real time operation and the planning of electric market.

과도안정도 에너지 마진 향상을 위한 TCSC 적정치의 실시간 산정 (Real-Time Estimation of TCSC Quantity for Improvement of Transient Stability Energy Margin)

  • 김수남;유석구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 A
    • /
    • pp.242-244
    • /
    • 2000
  • This paper presents a method for real-time estimation of TCSC quantity in order to enhance the power system transient stability energy margin using fuzzy neural network in multi-machine system. This paper has two parts, the first part is to estimate the energy margin. To set critical energy, we use the potential energy boundary surface(PEBS) method which one of the transient energy function(TEF) method. And the second is to determine the TCSC quantify and the line to be injected. In order to make training data in this step, we use genetic algorithm. The proposed method is applied to 6-bus, 7-line, 4-machine model system to show its effectiveness.

  • PDF

에너지함수법을 이용한 가용송전용량(ATC) 계산에 관한 연구 (A study on the ATC(Available Transfer Capabilily) calculation using an Energy Function Method)

  • 김재현;정성원;김양일
    • 조명전기설비학회논문지
    • /
    • 제22권2호
    • /
    • pp.94-100
    • /
    • 2008
  • 가용송전용량(ATC)은 계통내의 한 지역에서 다른 지역까지 실제 전력을 증가시키는 것이다. 지금까지 ATC 계산은 대부분 정상상태에서 실행가능성을 주로 고려하여 계산되어 왔다. 하지만 ATC 평가시 과도안정도로 제약된 ATC 계산은 매우 중요한 부분이다. ATC 평가시에는 제약조건으로 열적용량, 전압 및 과도안정도로 제약된 상정사고(n-1)시 안전도 평가가 요구된다. 본 논문은 자코비안 행렬의 고유치를 이용하여 상정사고 우선순위를 선정하였고, 에너지 함수법을 이용하여 선로의 열적용량, 전압안정도 및 과도안정도를 고려한 ATC를 계산하였다.