• Title/Summary/Keyword: The Strength of Obstacle

Search Result 56, Processing Time 0.021 seconds

Research and Calculate 29/34-Seat Passenger Cars to Ensure Safety for Occupants in the Event of a Collision According to ECE R94 Standards

  • Vu Hoang, Phuong;Nguyen Cong, Thanh;Nguyen Quoc, Tuan;Ta Hong Thanh, Tu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.140-144
    • /
    • 2023
  • In recent years, there are so many serious crashes involving coaches, especially the frontal collision occupies 40% of the front of the vehicle, Frontal collisions account for 100% of the front of the vehicle affecting the driver and side-impact collisions that injure the person in the vehicle. Therefore, the research into improving and optimizing the structure is necessary for risk of injury for passengers in frontal accidents. In this paper, we have designed a Shock absorber that can absorb collision energy. Research using HYPERMESH software. to build the finite element model and calculate the meshing to suit the mesh size of 5mm. apply LS-DYNA software to calculate structural strength. In the study, for a vehicle to collide with a hard obstacle occupying 100% of the head of the vehicle. Then, the experimental design method, Minitab is used for find the structural parameters in the design. Improvement results showed that the acceleration of the impact on passengers and the driver is decreased by 55,17%. The mass of texture improvements is reduced by 11%, according to the requirements of European Standards ECE R94.

Energy-Effective Low-Cost Small Mobile Robot Implementation for Mobile Sensor Network (모바일 센서 네트워크를 위한 에너지 효율적이고 경제적인 소형 이동 로봇의 개발)

  • Kim, Hong-Jun;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.3
    • /
    • pp.284-294
    • /
    • 2008
  • In this paper, we describe an implementation of small mobile robot that can be used at research and application of mobile sensor networking. This robot that will constitute the sensor network, as a platform of multi-robot system for each to be used as sensor node, has to satisfy restrictions in many aspects in order to perform sensing, communication protocol, and application algorithms. First, the platform must be designed with a robust structure and low power consumption since its maintenance after deployment is difficult. Second, it must have flexibility and modularity to be used effectively in any structure so that it can be used in various applications. Third, it must support the technique of wireless network for ubiquitous computing environment. At last, to let many nodes be scattered, it must be cost-effective and small. Considering the above restrictions of the mobile platform for sensor network, we designed and implemented robots control the current of actuator by using additional circuit for power efficiency. And we chose MSP430 as MCU, CC2420 as RF transceiver, and etc, that have the strength in the aspect of power. For flexibility and modularity, the platform has expansion ports. The results of experiments are described to show that this robot can act as sensor node by RF communication process with Zigbee standard protocol, execute the navigation process with simple obstacle avoidance and the moving action with RSSI(Received Signal Strength Indicator), operate at low-power, and be made with approx. $100.

Investigating the Cause of Hindrance to the Interfacial Bonding of INCONEL 718 Layer Deposited by Kinetic Spray Process (저온 분사 공정을 이용해 적층된 INCONEL 718의 계면접합 저해요인 분석)

  • Kim, Jaeick;Lee, Seungtae;Lee, Changhee
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.6
    • /
    • pp.275-282
    • /
    • 2015
  • The cost for maintenance (replacement cost) of Ni-superalloy components in plant industry is very expensive because of high unit price of INCONEL 718. A development of repairing technology using kinetic spray process can be very helpful for reducing the maintenance cost. However, it is very difficult to produce well-deposited INCONEL 718 layer showing high interfacial bond strength via kinetic spraying. Thus, INCONEL 718 was deposited on SCM 440 substrate and the interfacial properties were investigated, in order to elucidate the cause of hindrance to the bonding between INCONEL 718 layer and SCM 440 substrate. As a result, it was revealed that the dominant obstacle to the interfacial bonding was excessive compressive residual stress accumulated in the coating layer, resulting from low plastic-deformation susceptibility of INCONEL 718. Nevertheless, the bonding state was enhanced by the post heat-treatment through relieving the residual stress and generating a diffusion/metallurgical bonding between the INCONEL 718 deposit and SCM 440 substrate.

Development of Thermoplastic Carbon Composite Bipolar Plates for High-temperature PEM Fuel Cells (고온 양성자 교환막 연료전지용 열가소성 탄소 복합재료 분리판 개발)

  • Lim, Jun Woo;Kim, Minkook;Lee, Dai Gil
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.243-248
    • /
    • 2016
  • Although thermoset carbon fiber composite bipolar plates not only have high mechanical properties but also high corrosion resistance in acid environment, high manufacturing cost and low bulk electrical conductivity are the biggest obstacle to overcome. In this research, thermoplastic polymer is employed for the matrix of carbon composite bipolar plate to increase both the manufacturing productivity and bulk electric conductivity of the bipolar plate. In order to increase the electrical conductivity and strength, plain type carbon fabric rather than chopped or unidirectional fibers is used. Also nano particles are embedded in the thermoplastic matrix to increase the bulk resistance of the bipolar plate. The area specific resistance and the mechanical strength of the developed bipolar plate are measured with respect to the environmental temperature and stack compaction pressure.

Evaluation of Thin Film Residual Stress through the Analysis of Stress Relaxation Path and the Modeling of Contact Morphology (응력완화 경로분석과 압입자/시편간 접촉형상 모델링에 바탕한 박막재료의 국소 잔류응력 평가)

  • Lee, Yun-Hee;Kim, Sung-Hoon;Jang, Jae-Il;Kwon, Dong-Il
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.237-242
    • /
    • 2001
  • Residual stress is a dominant obstacle to efficient production and safe usage of products by reducing the mechanical strength and failure properties. Especially, it causes interfacial failure and substrate deflection in the case of thin film. So, the exact evaluation and optimum control of thin film residual stress is indispensable. However, hole drilling or X-ray diffraction techniques have some limits in application to thin film. And, curvature technique for thin film materials cannot give the information about local stress variation. Therefore, we applied the nanoindentation technique in evaluating the thin film residual stress. In this study, we modeled the change of indentation loading curve for residually stressed and stress-free thin films during stress relaxation. The value of residual stress was directly related to the indentation depth change by relaxation. The residual stress from nanoindentation analysis was consistent with the result from curvature technique.

  • PDF

Compressive behavior of concrete confined with iron-based shape memory alloy strips

  • Saebyeok, Jeong;Kun-Ho E., Kim;Youngchan, Lee;Dahye, Yoo;Kinam, Hong;Donghyuk, Jung
    • Earthquakes and Structures
    • /
    • v.23 no.5
    • /
    • pp.431-444
    • /
    • 2022
  • The unique thermomechanical properties of shape memory alloys (SMAs) make it a versatile material for strengthening and repairing structures. In particular, several research studies have already demonstrated the effectiveness of using the heat activated shape memory effect of nickel-titanium (Ni-Ti) based SMAs to actively confine concrete members. Despite the proven effectiveness and wide commercial availability of Ni-Ti SMAs, however, their high cost remains a major obstacle for applications in real structural engineering projects. In this study, the shape memory effect of a new, much more economical iron-based SMA (Fe-SMA) is characterized and the compressive behavior of concrete confined with Fe-SMA strips is investigated. Tests showed the Fe-SMA strips used in this study are capable of developing high levels of recovery stress and can be easily formed into hoops to provide effective active and passive confining pressure to concrete members. Compared to concrete cylinders confined with conventional carbon fiber-reinforced polymer (CFRP) composites, Fe-SMA confinement yielded significantly higher compressive deformation capacity and residual strength. Overall, the compressive behavior of Fe-SMA confined concrete was comparable to that of Ni-Ti SMA confined concrete. This study clearly shows the potential for Fe-SMA as a robust and cost-effective strengthening solution for concrete structures and opens possibilities for more practical applications.

Thermal and mechanical properties of C/SiC composites fabricated by liquid silicon infiltration with nitric acid surface-treated carbon fibers

  • Choi, Jae Hyung;Kim, Seyoung;Kim, Soo-hyun;Han, In-sub;Seong, Young-hoon;Bang, Hyung Joon
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.1
    • /
    • pp.48-53
    • /
    • 2019
  • Carbon fiber reinforced SiC composites (C/SiC) have high-temperature stability and excellent thermal shock resistance, and are currently being applied in extreme environments, for example, as aerospace propulsion parts or in high-performance brake systems. However, their low thermal conductivity, compared to metallic materials, are an obstacle to energy efficiency improvements via utilization of regenerative cooling systems. In order to solve this problem, the present study investigated the bonding strength between carbon fiber and matrix material within ceramic matrix composite (CMC) materials, demonstrating the relation between the microstructure and bonding, and showing that the mechanical properties and thermal conductivity may be improved by treatment of the carbon fibers. When fiber surface was treated with a nitric acid solution, the observed segment crack areas within the subsequently generated CMC increased from 6 to 10%; moreover, it was possible to enhance the thermal conductivity from 10.5 to 14 W/m·K, via the same approach. However, fiber surface treatment tends to cause mechanical damage of the final composite material by fiber etching.

Whitman's Strategy of Cultural Independence through Reterritorialization and Deterritorialization

  • Jang, Jeong U
    • Journal of English Language & Literature
    • /
    • v.55 no.3
    • /
    • pp.497-515
    • /
    • 2009
  • Culture as a source of identity, as Edward Said says, can be a battleground on which various political and ideological causes engage one another. It is not mere individual cultivation or private possession, but a program for social cohesion. Sensitively aware that a national culture should be independent from Europe, Walt Whitman enacts a new form of literature by placing different cultural values against Old World tradition. His interest in autochthonous culture originates from his deep concern about national consciousness. He believes that literary taste directed toward highly-ornamented elite culture is an obstacle to cultural unification of a nation. In order to represent American culture of the common people, Whitman incorporates a lot of cultural material into his poetry. Since he believes that America has many respectable writers at home, he urges people to adjust to their own taste instead of running after foreign authors. Whitman differentiated his poetry from previous literary models by disrupting the established literary norms and reconfiguring cultural values on the basis of American ways of life. In his comment on other poets, he concentrates on the originality and nativity of poetry. By claiming that words have characteristics of nativity, independence, and individuality, he envisions American literature to be distinguished from British literature in literary materials as well as in language. Whitman s language is composed of a vast number of words that can fully portray the nation. He works over language materials in two ways: reterritorialization and deterritorialization. Not only does his literary language become subversive of the established literary language, but also makes it possible to express strength and intensity in feeling.

A Study on Driving Algorithm and Communication Characteristics for Remote Control of Mini Excavator (소형 굴삭기의 원격제어를 위한 주행 알고리즘 및 통신특성에 관한 연구)

  • Jeong, Jin Beom;Kim, Kyung Soo
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.81-90
    • /
    • 2018
  • Indoor construction site such as building demolition sites, tunnel, vinyl house, and cattle shed are subject to various risk factors such as falling stones, soot and bad odors. However, most of the mini excavators have no cabin that can protect the driver from such risk factors. Therefore, researches on remote control technology of construction equipment are actively conducted as a method for protecting the driver from the risk factors occurring in the working environment. For effective remote control, it is necessary to be able to control the travelling and work using a portable small transmitter. However, due to the limitation of the size of the transmitter, complex operation control is required to control two or more actuators with a single joystick. Also, it is essential to check how remote control characteristics change in various environments such as distance, signal strength, obstacle. Therefore, in this study, an algorithm that can control two actuators simultaneously with a single joystick signal was developed, and a communication method suitable for indoor and outdoor mini construction equipment by analyzing experimentally how the remote control characteristics vary according to various work environments and telecommunication methods proposed.

Development of high durable metallic bipolar plate for Polymer Electrolyte Membrane Fuel Cells (고분자 전해질 연료전지 금속분리판 코팅 내구성 평가)

  • Kim, Minsung;Seo, Hakyu;Han, In-Su;Jung, Jeehoon;Shin, Hyungil;Hur, Taeuk;Cho, Sungbaek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.87.1-87.1
    • /
    • 2010
  • Metallic bipolar plate is the one of the promising candidate material for PEMFC because of mechanical strength, low gas permeability, electrical and thermal conductivity. However, the corrosion is the main obstacle of metallic bipolar plate, and many investigations, especially coating on base metal, have been carried out to avoid corrosion. Gold is considered as the one of the best coating material because of its corrosion resistance and electrical conductivity. In this study, gold coated metallic bipolar plate was developed and evaluated. Due to our coating process, gold can be well-adhere to the base material, and hydrophobic material on its gold surface was coated by dipping method for better water management. To verify coating reliability, a single fuel cell(50cm2) was evaluated, and its durability over 4000hrs was demonstrated.

  • PDF