• Title/Summary/Keyword: The Reliability

Search Result 26,902, Processing Time 0.048 seconds

Reliability-Based Optimal Design of Pillar Sections Considering Fundamental Vibration Modes of Vehicle Body Structure (차체 기본 진동 모드를 고려한 필러 단면의 신뢰성 최적설계)

  • Lee Sang Beom;Yim Hong Jae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.6
    • /
    • pp.107-113
    • /
    • 2004
  • This paper presents the pillar section optimization technique considering the reliability of the vehicle body structure consisted of complicated thin-walled panels. The response surface method is utilized to obtain the response surface models that describe the approximate performance functions representing the system characteristics on the section properties of the pillar and on the mass and the natural frequencies of the vehicle B.I.W. The reliability-based design optimization on the pillar sections Is performed and compared with the conventional deterministic optimization. The FORM is applied for the reliability analysis of the vehicle body structure. The developed optimization system is applied to the pillar section design considering the fundamental natural frequencies of passenger car body structure. By applying the proposed RBDO technique, it can be possible to optimize the pillar sections considering the reliability that engineers require.

Accelerated Test Design for Crankshaft Reliability Estimation

  • Jung, D.H.;Pyun, Y.S.;Gafurov, A.;Chung, W.S.
    • International Journal of Reliability and Applications
    • /
    • v.10 no.2
    • /
    • pp.109-118
    • /
    • 2009
  • Crankshaft, the core element of the engine of a vehicle, transforms the translational motion generated by combustion to rotational motion. Its failure will cause serious damage to the engine so its reliability verification must be performed. In this study, the S-N data of the bending and torsion fatigue limits of a crankshaft are derived. To evaluate the reliability of the crankshaft, reliability verification and analysis are performed. For the purpose of further evaluation, the bending and torsion tests of the original crankshaft are carried out, and failure mode analysis is made. The appropriate number of samples, the applied load, and the test time are computed. On the basis of the test results, Weibull analysis for the shape and scale parameters of the crankshaft is estimated. Likewise, the $B_{10}$ life under 50% of the confidence level and the MTTF are exactly calculated, and the groundwork for improving the reliability of the crankshaft is laid.

  • PDF

Optimal Inspection Policy for One-Shot Systems Considering Reliability Goal (목표 신뢰도를 고려한 원-샷 시스템의 최적검사정책)

  • Jeong, Seung-Woo;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.96-104
    • /
    • 2017
  • A one-shot system (device) refers to a system that is stored for a long period of time and is then disposed of after a single mission because it is accompanied by a chemical reaction or physical destruction when it operates, such as shells, munitions in a defense weapon system and automobile airbags. Because these systems are primarily related with safety and life, it is required to maintain a high level of storage reliability. Storage reliability is the probability that the system will operate at a particular point in time after storage. Since the stored one-shot system can be confirmed only through inspection, periodic inspection and maintenance should be performed to maintain a high level of storage reliability. Since the one-shot system is characterized by a large loss in the event of a failure, it is necessary to determine an appropriate inspection period to maintain the storage reliability above the reliability goal. In this study, we propose an optimal inspection policy that minimizes the total cost while exceeding the reliability goal that the storage reliability is set in advance for the one-shot system in which periodic inspections are performed. We assume that the failure time is the Weibull distribution. And the cost model is presented considering the existing storage reliability model by Martinez and Kim et al. The cost components to be included in the cost model are the cost of inspection $c_1$, the cost of loss per unit time between failure and detection $c_2$, the cost of minimum repair of the detected breakdown of units $c_3$, and the overhaul cost $c_4$ of $R_s{\leq}R_g$. And in this paper, we will determine the optimal inspection policy to find the inspection period and number of tests that minimize the expected cost per unit time from the finite lifetime to the overhaul. Compare them through numerical examples.

Reliability of rehabilitative ultrasound imaging for measuring the gluteus maximus muscle at rest and during contraction

  • Jeong, Ju-Ri;Lee, Su-Jin;Lee, Wan-Hee
    • Physical Therapy Rehabilitation Science
    • /
    • v.6 no.1
    • /
    • pp.7-13
    • /
    • 2017
  • Objective: The aim of this study was to investigate the inter-rater and intra-rater reliability of rehabilitative ultrasound imaging (RUSI) for measurement of muscle thickness with changes in angles of the gluteus maximus (GM) at rest and during contraction. Design: Cross-sectional study. Methods: Twenty-two healthy men volunteered for this study. GM muscle images were obtained in the resting position and during prone hip extension with knee flexion at hip abduction angles of $0^{\circ}$ and $30^{\circ}$, respectively. Two examiners randomly measured the thickness of the GM twice in three different positions. The first position was a comfortable prone position. The second position was prone hip extension with knee flexion (PHEKF) to $90^{\circ}$. The third position was achieved by hanging a 1-kg weight on the ankle of the lifted leg during PHEKF with the angle of the lifted leg the same as the second position. Intra-class correlation coefficients (ICCs), standard error measurements, and minimal detectable changes were used to estimate reliability. Results: The intra-rater reliability ICCs (95% confidence interval) of the GM were >0.870, indicating good reliability. Inter-rater reliability ICCs ranged from 0.668 to 0.913. The reliability of measurements of muscle thickness at each position was similar to the reliability of the angle change. Differences in muscle thickness and ratios for each position with $0^{\circ}$ and $30^{\circ}$ of hip abduction were not statistically significant. Conclusions: In the present study, the intra-rater reliability of muscle thickness measurements of the GM was good, and the inter-rater reliability was moderate to good. Reliable RUSI measurements of wide and large muscles, such as the GM muscle at rest and during contraction, are feasible. Further investigation is required to establish the reproducibility of the protocols presented in this study.

Reliability Evaluation of a Pin Puller via Monte Carlo Simulation

  • Lee, Hyo-Nam;Jang, Seung-gyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.537-547
    • /
    • 2015
  • A Monte Carlo (MC) simulation was conducted to predict the reliability of a newly developed pyrotechnic pin puller. The reliability model is based on the stress-strength interference model that states that failure occurs if the stress exceeds the strength. In this study, the stress is considered to be the energy consumed by movement of a pin shaft, and the strength is considered to be the energy generated by pyrotechnic combustion for driving the pin shaft. Failure of the pin puller can thus be defined as the consumed energy being greater than the generated energy. These energies were calculated using a performance model formulated in the previous study of the present authors. The MC method was used to synthesize the probability densities of the two energies and evaluate the reliability of the pin puller. From a probabilistic perspective, the calculated reliability was compared to a deterministic safety factor. A sensitivity analysis was also conducted to determine which design parameters most affect the reliability.

A Study on the Optimum Software Release with Uniform Testing Efforts (일정테스트노력 소프트웨어의 최적발행)

  • Che, Gyu-Shik;Kim, Jong-Ki;Chang, Won-Seok
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.1
    • /
    • pp.18-25
    • /
    • 2002
  • The software reliability is defined, and not only the relations between testing time and reliability, but also the relation between duration following failure fixing and reliability are studied in this paper. The release time making the testing cost to be minimum is determined through evaluating the cost for each condition. Also, the release time is determined depending on the conditions of the first reliability, considering the specified reliability. the optimum release time is determined by simultaneously studying two optimum release time issues that determine both the cost related time and the specified reliability related time. And, each condition and limitation are studied. The trend of the optimum time is also examined.

Reliability analysis of steel cable-stayed bridges including soil-pile interaction

  • Cheng, Jin;Liu, Xiao-luan
    • Steel and Composite Structures
    • /
    • v.13 no.2
    • /
    • pp.109-122
    • /
    • 2012
  • An efficient and accurate algorithm is proposed to evaluate the reliability of cable-stayed bridges accounting for soil-pile interaction. The proposed algorithm integrates the finite-element method and the response surface method. The finite-element method is used to model the cable-stayed bridge including soil-pile interaction. The reliability index is evaluated based on the response surface method. Uncertainties in the superstructure, the substructure and load parameters are incorporated in the proposed algorithm. A long span steel cable-stayed bridge with a main span length of 1088 m built in China is considered as an illustrative example. The reliability of the bridge is evaluated for the strength and serviceability performance functions. Results of the study show that when strength limit states for both girder and tower are considered, soil-pile interaction has significant effects on the reliability of steel cable-stayed bridges. Further, a detailed sensitivity study shows that the modulus of subgrade reaction is the most important soil-pile interaction-related parameter influencing the reliability of steel cable-stayed bridges.

Assessing Process and Method Improvement of Reliability Growth Test Data with Growth Rate Changing During Testing (신뢰성성장시험 중 발생한 신뢰성성장률 변화를 고려한 고장 평가과정 및 평가방법 개선에 대한 연구)

  • So, Young-Kug;Jeon, Young-Rok;Ryu, Byeong-Jin
    • Journal of Applied Reliability
    • /
    • v.14 no.2
    • /
    • pp.129-136
    • /
    • 2014
  • Reliability test is focusing to detect the unexpected reliability failure and solve them for the high quality of products. The test data should be used to assess and project the current level of interesting product reliability and so it is very important to have the accurately assessing methodology with test data. There are two type of trend for test data as constant and changing one during testing and this paper shows the difference in the assessing results of these two cases. There is less information how to define the existence of reliability growth rate changing and calculate the parameters of the reliability growth models to make an accurate assessment with such condition, so i established the process and mathematical model to calculate the parameters at such condition to make reliability growth curve with high Goodness of Fit. I validated the new method with the data made from Monte Carlo Simulation and case from Demko (1993). Even the assessed result with the new methodology may be different with the case by case because of very diversity in test condition and testing product quality, but the process and method founded in this research can be applied to any case using Duane and AMSAA model for their test data assessment. I also present the evaluation method to see the effectiveness with new one which is a conventional knowledge and not popular to use, so it is possible to compare the results with the newly presented and conventional method for better business decision.

A Study on the Optimum Software Release with without Testing Efforts (테스트노력을 고려하지 않은 소프트웨어의 최적발행)

  • Che, Gyu-Shik
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1109-1112
    • /
    • 2005
  • The software reliability is defined, and not only the relations between testing time and reliability, but also the relation between duration following failure fixing and reliability are studied in this paper. The release time making the testing cost to be minimum is determined through evaluating the cost for each condition. Also, the release time is determined depending on the conditions of the first reliability, considering the specified reliability. The optimum release time is determined by simultaneously studying two optimum release time issues that determine both the cost related time and the specified reliability related time. And, each condition and limitation are studied. The trend of the optimum time is also examined.

  • PDF

A Method for Computing the Network Reliability of a Computer Communication Network

  • Ha, Kyung-Jae;Seo, Ssang-Hee
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 1998.10a
    • /
    • pp.202-207
    • /
    • 1998
  • The network reliability is to be computed in terms of the terminal reliability. The computation of a terminal reliability is started with a Boolean sum of products expression corresponding to simple paths of the pair of nodes. This expression is then transformed into another equivalent expression to be a Disjoint Sum of Products form. But this computation of the terminal reliability obviously does not consider the communication between any other nodes but for the source and the sink. In this paper, we derive the overall network reliability which all other remaining nodes. For this, we propose a method to make the SOP disjoint for deriving the network reliability expression from the system success expression using the modified Sheinman's method. Our method includes the concept of spanning trees to find the system success function by the Cartesian products of vertex cutsets.

  • PDF