• Title/Summary/Keyword: The Reliability

Search Result 26,902, Processing Time 0.045 seconds

Development and Application of Reliability DB Program for K-AGT system (한국형경량전철(K-AGT)시스템의 신뢰성 DB 프로그램 개발과 활용)

  • Han Seok-Youn;Ha Chen-Soo;Lee Ho-Yong;Hong Soon-Ki;Yi Woo-June
    • Journal of the Korea Safety Management & Science
    • /
    • v.8 no.2
    • /
    • pp.91-102
    • /
    • 2006
  • Korea Railroad Research Institute developed the driverless rubber-tired Korean-AGT system from 1999 to 2005 and has done its performance and reliability tests on the test line at Gyeongsan-city. We made the reliability management program to control required the RAMS(reliability, availability, maintainability & safety) of the K-AGT system. Therefore, we demonstrated the development and application of Reliability DB program. The main functions of K-AGT Reliability DB program manages failures and maintenance data systematically from the test line through test period and provides various analysis results based on the inputted data.

A Study on Warranty and Quality Assurance Model for Guided Missiles Based on Storage Reliability (저장신뢰도 기반의 유도탄 품질보증모델에 대한 연구)

  • Jung, Sanghoon;Lee, Sangbok
    • Journal of Applied Reliability
    • /
    • v.17 no.2
    • /
    • pp.83-91
    • /
    • 2017
  • Purpose: The purpose of this study is to develop a quality assurance model and to determine appropriate warranty period for a guided missile using its field data. Methods: 10 years of actual firing data is collected from the defense industry company and military. Parametric maximum likelihood estimation for a reliability function is determined with the data. Results: The reliability function estimates average lifetime of the missile. That function shows a user requirement, 80% reliability (lifetime) is come up when 8 years have passed, which is longer than the estimates in the missile's development phase. Conclusion: Quality assurance warranty for a guided missile must be established with actual test data. It is necessary to update and modify the reliability prediction and the warranty period with actual field test data.

Parameters Estimation of Generalized Linear Failure Rate Semi-Markov Reliability Models

  • El-Gohary, A.;Al-Khedhair, A.
    • International Journal of Reliability and Applications
    • /
    • v.11 no.1
    • /
    • pp.1-16
    • /
    • 2010
  • In this paper we will discuss the stochastic analysis of a three state semi-Markov reliability model. Maximum likelihood procedure will be used to obtain the estimators of the parameters included in this reliability model. Based on the assumption that the lifetime and repair time of the system units are generalized linear failure rate random variables, the reliability function of this system is obtained. Also, the distribution of the first passage time of this system will be derived. Some important special cases are discussed.

  • PDF

A Study on the Software Reliability of Operational Stage S/W (운영중인 소프트웨어의 신뢰도에 관한 연구)

  • Che, Gyu-Shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.445-450
    • /
    • 2009
  • One method to improve quality before releasing of S/W after development is to enhance the reliability, whose direct methodology is to detect and revise fault through testing. Once the S/W is released because it meets the target reliability, the operational reliability problem arises. It is obvious the operational reliability different from that of testing stage depending on the condition whether it is universal(package) S/W or dedicated S/W. I propose the methodology to calculate operational software reliability of universal and dedicated S/W in this paper.

Practical Application of AMSAA Model in the Product Development Process (제품개발 과정에서 AMSAA 모델의 실용적 활용방법)

  • Jung, Won;Kim, Jun-Hong
    • IE interfaces
    • /
    • v.19 no.1
    • /
    • pp.19-25
    • /
    • 2006
  • In the development process, the objective of a reliability growth program is to track the increase in system reliability, and determine as early as possible whether or not the system reliability is growing at a sufficient rate to meet the required goal and allocate available resources accordingly. Implementation of this kind of program will provide very useful information on concept selection, product/process reliability, and cost effectiveness without too much time, money and engineering effort being spent on the development of failure suspect parts. The purpose of this research is to present a practical method for efficiently monitoring a reliability growth test process using AMSAA(Army Materiel Systems Analysis Activity) reliability growth model. The presented growth management is a viable method for identifying failure modes, incorporating design changes and monitoring reliability progress on an on-going basis during the early stages of a product development program.

A Study on Reliability Analysis & Determination of Replacement Cycle of the Railway Vehicle Contactor (철도차량 접촉기의 신뢰성 분석 및 교환주기 결정에 대한 연구)

  • Park, Minheung;Rhee, Sehun
    • Journal of Applied Reliability
    • /
    • v.17 no.4
    • /
    • pp.316-324
    • /
    • 2017
  • Purpose: The purpose of this study is to determine the replacement cycle applied age replacement policy by reliability analysis based on railway vehicle contactor's failure history data. Method: We performed reliability analysis based on railway vehicle contactor's failure history data. We found a suitable distribution by goodness of fit test and predicted the reliability through estimation of scale & shape parameter. Considering cost information we determined the replacement cycle that minimize the opportunity cost. Result: Suitable distribution was the Weibull and scale parameter & shape parameter are estimated by reliability analysis. The replacement cycle was predicted and MTTF, $B_6$ percentile life were suggested additionally. Conclusion: We confirmed that failure rate type of railway vehicle contactor is degradation model having a time dependent characteristic and examined the replacement cycle in our country's operating environment. We expect that this study result contribute to railway operation agency for maintenance policy decision.

On procedures for reliability assessment of mechanical systems and structures

  • Schueller, G.I.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.3
    • /
    • pp.275-289
    • /
    • 2007
  • In this paper a brief overview of methods to assess the reliability of mechanical systems and structures is presented. A selection of computational procedures, stochastic structural dynamics, stochastic fatigue crack growth and reliability based optimization are discussed. It is shown that reliability based methods may form the basis for a rational decision making.

Time-variant structural fuzzy reliability analysis under stochastic loads applied several times

  • Fang, Yongfeng;Xiong, Jianbin;Tee, Kong Fah
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.525-534
    • /
    • 2015
  • A new structural dynamic fuzzy reliability analysis under stochastic loads which are applied several times is proposed in this paper. The fuzzy reliability prediction models based on time responses with and without strength degeneration are established using the stress-strength interference theory. The random loads are applied several times and fuzzy structural strength is analyzed. The efficiency of the proposed method is demonstrated numerically through an example. The results have shown that the proposed method is practicable, feasible and gives a reasonably accurate prediction. The analysis shows that the probabilistic reliability is a special case of fuzzy reliability and fuzzy reliability of structural strength without degeneration is also a special case of fuzzy reliability with structural strength degeneration.

A Study on Probabilistic Reliability Evaluation Considering Transmission System :TRELSS and TranRel (송전계통을 고려한 확률론적 신뢰도 평가에 관한 연구 : TRELSS and TranRel)

  • 최재석;강성록;트란트롱틴;전동훈;문승필;추진부
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.1
    • /
    • pp.43-55
    • /
    • 2004
  • This paper presents a study on evaluating the reliability indices considering a transmission system. Because successful operation of electric power under the deregulated electricity market depends on transmission system reliability management, quantity evaluation of transmission system reliability is very important. This paper introduces features and operation modes of the Transmission Reliability Evaluation for Large-Scale Systems(TRELSS) Version 6.0, a commercial program made in EPRI, and TranRel-I V3.2, a educational program made in GSNU(GyeongSang National University) for assessing reliability indices of composite power system. The packages access not only bulk but also bus indices for reliability evaluation of composite powers system. The practicality, effectiveness and future works of this methodology are illustrated by demonstrations of two case studies of modified IEEE 25 buses reliability test system using TRELSS and TranRel-I and a brief case study for the KEPCO size system using TranRel-II made in GSNU.