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Abstract

Experimental design has become one of the primary tools for achieving quality of
manufactured products. However, this important tool has not been extensively used in
achieving reliability. In this paper, we describe how experimental design can be used to

achieve reliability.
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1. Introduction

Industry rediscovered statistically designed experiments as an efficient tool for
improving quality of products and processes. Therefore, many companies are striving to
introduce new initiatives of proactive strategies so that they can meet and exceed the
quality and reliability of their competitors. In response to this effort, experimental design
in combination with reliability can be an example of an active program.

Reliability could be just one aspect of quality. In an editorial in IEEE Transactions on
Reliability, Evans (1985) says that the concept of quality must expand to include not
only the initial performance characteristics but also those characteristics that influence
length of life.

In this paper, we consider how to improve the reliability of products and processes
through the use of designed experiments. In Section 2, examples of experiments with
failure time data are introduced. Censored data are introduced in Section 2. A common
approach to analyzing lifetime data when there is censoring and when there are
independent variables is using the Weibull or lognormal regression model. Therefore, in
Section 3, regression models that can deal with independent variables and a response
variable are discussed. This approach can be used to determine which factors affect the
lifetime of a unit. Likelihood approaches are used to estimate the parameters of the
models. In Section 4, the experimental data shown in Section 2 are analyzed using the
approach in Section 3. Finally in Section 5 we reemphasize the importance of
experimental designs in reliability analysis and comment on another way of dealing with

censored data.

2. Examples of Experiments with Failure Time Data

Experimental designs have been used in improving the quality of manufactured
products. When there are many factors to consider, fractional factorial designs are
generally used for economic reasons. However, experimental designs have not been as
widely used in reliability as in quality. One of the literatures dealing with reliability in
the experimental designs is Hellstrand(1989), where it deals with 2° full factorial design
without replicates. It deals with Heat, Osculation and Cage as factors and Lifetime as a
response variable(Table 1). This data will be analyzed in Section 4.
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<Table 1> Rolling Ball Bearing Lifetimes

Run Heat ( X, ) |Osculation ( X, )| Cage ( X3 ) Lifetime (t)
1 -1 -1 -1 17

2 1 -1 -1 26

3 -1 1 -1 25

4 1 | -1 85

5 -1 -1 1 19

6 1 -1 1 16

7 -1 1 1 21

8 1 1 1 128

Bullington et al (1993) provide an example of a 12-run Plackett-Burman design to

improve the reliability of industrial thermostats (Table 2). Eleven factors(A-K) were
studied in which 10 thermostats were manufactured at each of the 12 run settings
(Table 3). This data will also be analyzed in Section 4.

<Table 2> 12-Run Plackett-Burman Design for the Thermostat Experiment

Run A B C D E F G H I J K
1 - - - - - - - - - -
2 - - - - - + + + + + +
3 - - + + + - - - + + +
4 - + - + + - + + - - +
5 - + + - + + - + - + -
6 - + + + - + + - + - -
7 + - + + - - + + - + -
8 + - + - + + + - - +
9 + - - + + + - + + - -
10 + + + - - - - + + - +
11 + + - + - + - - - + +
12 + + - - + + - + + -

<Table 3> Data from the Thermostat Experiment
Run Ordered Lifetime Data ( unit : k-cycle)
1 957 2846 . . ) . . . . .
2 206 284 296 305 313 343 364 420 422 543
3 63 113 129 138 149 153 217 272 311 402
4 76 104 113 234 270 364 398 481 517 611
5 92 126 245 250 390 390 479 487 533 573
6 490 971 1642 6768 . ) . . . .
7 232 326 326 351 372 446 459 590 597 732
3 56 71 92 104 126 156 161 167 216 263
9 142 142 238 247 310 318 420 482 663 672
10 259 266 306 337 347 368 372 426 451 510
11 381 420 . ) . . . . . .
12 56 62 92 104 113 121 164 232 258 731

. means right censored at 7342 k-cycle
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In the above experiments, no explicit noise factors have been used. However, noise
variation is represented by the use of replicates for each control run. In the next
experiment noise factors are to be considered. In an experiment for improving the
reliability of drill bits used in fabricating multi-layer printed circuit boards, 11 control
factors as well as 5 noise factors are considered as in Table 4. The experiment
employed a cross array consisting of a 16-run control array and an 8-run noise array.
The number of holes drilled before it breaks is defined as the failure time of a drill bit.
The cross array and the data (Hamada, 1993) are given in Table 5. Note that the
testing was stopped after 3000 -holes were drilled. If a drill bit did not break before 3000
holes, its failure time was right censored at 3000.

<Table 4> Factors and Their Levels for the Drill Bit Experiment

Control factor Level
0 1 2 3
A. carbide cobalt (%) Al A2 A3 Ad
Level
- +
B. body length (in.) Minimum Minimum + 30%
C. web thickness (% diameter) {Cl C2
D. web taper D1 D2
E. moment of inertia (in.) Standard Standard+X
F. tsdial rake F1 F2
G. helix angle Gl G2
H. axial rake Hl H2
I. flute length (in.) Minimum Minimum+50%
J. point angle J1 J2
L. point style Standard Strong
Level
Noise factor : .
M. feed rate (in./min) 10 20
N. backup material Hard board phenolic
Q. pcb material Epoxy Polyamide
P. number of layers 8 12
Q. four 2-oz layers No Yes
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<Table 5> Cross Array and Failure Times in the Drill Bit Experiment

Noise factors

M - - - - + + + +

N - - + - - + +
Control factors O - - + + - -
A DBCVFGHTIE J L P - + - + - - +

Q - + + - + - -
0 - - e e e e e e e 1280 44 150 20 60 2 65 25
0 - - - -+ o+ o+ o+ o+ o+ 2680 125 120 2 165 100 795 307
0 + + + + - - - -+ + 2670 480 762 130 1422 280 670 130
0O + + + + + + + - - 2655 90 7 27 3 15 90 480
1 - -+ - -+ o+ -+ 3000 440 480 10 1260 5 1720 3000
1 - . e 2586 6 370 45 2190 36 1030 16
1 + + - - < - 4+ 4+ + - 3000 2580 20 320 425 85 950 3000
1+ o+ - -+ + - - - 4+ 800 45 260 250 1650 470 1250 70
2 - + - 4+ - o+ -+ .- 3000 190 140 2 100 3 450 840
2 - + + -+ -+ 3000 638 440 145 690 140 1180 1080
2 4+ - 4+ - -+ -+ o+ 3000 970 180 220 415 70 2630 3000
2 0+ - 4+ -+ -+ - .- 3000 180 870 310 2820 240 2190 1100
3 - + - -+ - -+ {3000 612 1611 625 1720 195 1881 2780
3 + - 4+ - - 4+ 4+ - 13000 1145 1060 198 1340 95 2509 345
3 - -+ - + + - + - [3000 3000 794 40 160 50 495 3000
3 B T + - + |680 140 809 275 1130 145 2025 125
L

3. Regression Models for Failure Time Data

Since failure time t can only take nonnegative values, a standard linear regression
modeling of t is not appropriate. The most obvious choice is the log transformation y=In
t. The following two failure time distributions are commonly used for reliability analysis:
Lognormal density function

=7k rlexp<—“ﬂ—g;§ﬁﬁ> N
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Weibull density function
D=4 lexp[= (DT, 150

where A the scale parameter and ¢ is the shape parameter

It is known that if t has a lognormal distribution, then y=In t has a normal distribution
N(g, ¢2) and that if it has a Weibull distribution, then y=In t has an extreme value
distribution whose density is

f(y)=% exp[%’i— exp (‘V—_jé)]

where ¢ =-—Indand o= ¢ ~! become the location and scale parameters, respectively.
Now a linear regression model can be applied to the transformed value of y as follows:

y,=In(t)=x [B+oe,;
=8t Brxgt+ -+ Brxptoe; 1=1,2,,»

where the { ¢; } are the failure times, x /=(1,x;-,%;) are the corresponding

vectors of covariates, = (8, b1, ...,Bp)T are the vector of regression parameters, and
¢ is the scale parameter. The errors { &; } have independent standard extreme value

distributions if the failure times follow a Weibull distribution and have independent N(Q,
1) distributions if the failure times follow a lognormal distribution. The covariates
correspond to an intercept, main effects, and possibly some interactions in reliability
improvement experiments.

In reliability experiments, it is common to have censored data even though accelerated
life testing is performed. In this case, if we can assume that life times follow some
types of distribution such as a lognormal or Weibull distribution, we can handle
censored data using likelihood approach to find some significant factors and interactions.
In this paper, we will show the likelihood only for the situation in which right censored
data are observed. But the likelihood approach can also be used for estimation in other
cases. For the right censored case, by collecting the contributions from the failure and
right-censored data, the likelihood can be shown to be

18 o= I (om0t ekl 1y x TyalF < AL

{1-¢[(y,—x [B)o]
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for the lognormal regression model and

L8 o= M Woetd (v~ x I9)id- exol( v~ x T4 = Oy %P

{ —expl( y;—x T8/l

for the Weibull regression model, where FAIL and CEN denote the sets of observed
failure times and censoring times, respectively.

Once the likelihood is obtained, maximum likelihood estimates can be obtained by
maximizing the likelihood with respect to the parameters. Then they need to be
compared with their standard errors to test the significance of the estimates. Standard
errors can be obtained from the Fishers information matrix I or from the observed

information matrix [, defined respectively as

_ o — LB
](@_E( 66,66] ) , 6=8"

and

__—&*L®
LO=—Fp750 | o0

which are evaluated at the MLE .

Likelihood ratio tests provide an alternative method for assessing significance of the

. th .
i ™ parameter in &

L( /9 (—l'))

where 6 (_; in the numerator are re the remaining parameters of the model from

which the " covariate is dropped. Under the null hypothesis 8,=0 Tis distributed

asymptotically as xz with one degree of freedom.

The exact conditions for the existence of MLEs can be found in Silvapulle and Burridge
(1986). In the reliability context, Hamada and Tse (1992) concluded that the estimability
problem tends to occur if the fitted model has nearly the same number of parameters as
the number of observations and especially if there is a single replicate. However, even if
the MLEs may be infinite the likelihood is well defined and the likelihood ratio tests can

be used (Clarkson and Jennrich, 1991).
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4. Analysis of Data from Reliability Experiments

In this section, reliability data appeared in Section 2 are examined using the LIFEREG
procedure of the SAS System. We do not use the signal-to-noise ratio based on the
loss~function approach due to the presence of censored data. Instead, response-model
approach is used since in reliability data analysis certain types of distributions such as
lognormal or Weibull distributions for the failure times can be usually assumed.

4.1. Rolling Ball Bearing Experiment

A 2°%ull factorial experiment without replicates has been performed to improve the
reliability of the rolling ball bearing. Three factors were studied in which 8 ball bearings
were manufactured at each of the 8 run settings. It is assumed that a Weibull
distribution would be appropriate for the failure times. Hence, the Weibull regression
model would be
y=In(= By+ By x,+ By xo+ B3 x5+ 0e

the LIFEREG procedure of the SAS System was run to give the MLEs, likelihood ratio

statistics and p values for the three main effects as in Table 6. The main effects
Heat(X1) and Osculation(X2) are found to be significant at the significance level of 0.05.

<Table 6> MLEs, Liklihood Ratio(LR)s and p-values from the Rolling Ball Bearing

Experimente
Effect MLE LR p-value
intercept 3.608 1022.76 0.0001
Heat{ X ;) 0.441 7.26 0.007**
Osculation( X, ) 0.445 7.29 0.007**
Cage( X ;) 0.099 0.80 0.372
o 0.303

4.2. Thermostat Experiment

A 12-run Plackett-Burman experimental design was run to improve the reliability of
industrial thermostats. Eleven factors were studied in which 10 thermostats were
manufactured at each of the 12 run settings. It is assumed that a lognormal distribution
would be appropriate for the failure times. The Ilognormal regression model is
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appropriate for this data. The model would be

y=1n(t)= B0+ BIA+ BzB+ 33C+ B4D+ B5E+ BGF+ B7G+ BgH
+ Bgl+ B/t BuK+oe

The MLEs, likelihood ratio statistics and p values for the 11 main effects are given as in Table 7.

<Table 7> MLEs, Likelihood Ratio{(LR)s and p-values from the Thermostat Experiment

Effect MLE LR p-value
Intercept 6.354 7412.96 0.0001
A -0.312 18.29 0.0001
B 0.221 9.18 0.0025
C -0.319 19.06 0.0001
D 0.285 15.24 0.0001
E -1.023 192.30* 0.0001
F 0.231 10.00 0.0016
G -0.390 28.36 0.0001
H -0.557 57.01* 0.0001
I -0.332 20.65 0.0001
J -0.277 14.42 0.0001
K -0.352 23.30 0.0001
o 0.764

Effects E and H are found to be most significant. Since Plackett-Burman design has
been run it is known that the main effects other than E and H have a 1/3 or -1/3
partial aliasing coefficient with EH. A narrow range of the other main effects strongly
suggests that they are due to the presence of an EH interaction. Dropping the B main
effect (the least significant from model) and adding EH to the model, the model would
be

y=In(H= Bo+ B1A+ B, (EH)+ B3C+ B4D+ BsE+ BeF+ B:G
+ 68H+ BQI+ Blo]+ B11K+GE

with the results as shown in Table8 Addition of EH to the model with the deletion of
the B main effect confirms that E, H and EH are the only significant effects.
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<Table 8> MLEs, Likelihood Ratio(LR)s and p-values from the Thermostat Experiment

Effect MLE LR p-value
Intercept 6.354 7412.96 0.0001
A -0.091 0.74 0.389
B 0.663 9.18 0.003**
C -0.098 0.88 0.346
D 0.064 0.42 0.518
E -0.023 192.30 0.0001**
F 0.010 0.01 0922
G -0.169 2.59 0.108
H -0.557 57.01 0.0001**
I -0.112 1.13 0.287
J -0.056 0.28 0.596
K -0.131 1.54 0.215
o 0.764

4.3. Drill Bit Experiment

11 control factors and 5 noise factors are considered in order to improve the reliability
of drill bits. The experiment employed a cross array consisting of a 16-run control
array and an 8-run noise array. Note that the testing was stopped after 3000 holes were
drilled.

A Weibull regression model is entertained for this data set. In addition to the other
control main effects, the AJ interaction can be estimated. For the noise array, only the
main effects are considered. In addition, 55(=11 X 5) control-by—noise interactions can
also be estimated. the LIFEREG procedure of the SAS System was run to give the
MLEs, likelihood ratio statistics and p values for all those parameters as in Table 9. For
the SAS program, see appendix. Therefore, we can tell that all of control main effects
but B, E and G are significant and that some interactions between control and noise

factors are also significant.
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<Table 9> MLEs, Likelihood Ratio(LR)s and p-values from the Drill Bit Experiment

Factor Effect MLE LR p-value p-value
Intercept 6.208 9253.49 0.0001 **
A 0.746 59.60 0.0001 *ok
B 0.134 2411 0.121
C 0.198 5.09 0.024 *
D 0.235 7.13 0.008 *x
Main  ControllE -0.071 0.68 0.408
F -0.222 6.65 0.010 *x
Factor G -0.134 2.34 0.126
H -0.180 4.33 0.037 *x
I 0314 13.01 0.0003 *x
J 0.226 10.93 0.001 *x
L 0.164 5.37 0.021 *x
_ M -0.041 0.28 0.5943
Main N -0.137 3.11 0.078
Noise 0 -0.854 169.64 0.0001 o
Factor P -0.801 109.17 0.0001 o
Q 0.153 3.95 0.047 o
Control*Contol |A*J -0.148 2.32 0.128
A*M -0.150 1.86 0.173
A*N 0.140 1.62 0.203
A*O -0.089 0.85 0.355
A*P 0.236 4.40 0.036 *ox
A*Q 0.194 3.09 3.079
B*M -0.045 0.28 0.597
B*N -0.082 0.92 0.337
B*O -0.054 0.40 0.528
B*P 0.166 3.65 0.056
B*Q -0.091 1.09 0.296
C*M 0.062 0.50 0.480
C*N 0.034 0.15 0.696
Control*Noise [C*O 0.063 0.51 0.475
C*p -0.129 2.08 0.149
C*Q -0.093 1.08 0.298
D*M 0.049 0.31 0.575
D*N 0.024 0.07 0.788
D*O 0.058 0.43 0.513
D*P 0.331 13.63 0.0002 o
D*Q -0.086 0.92 0.339
E*M 0.081 0.86 0.354
E*N 0.056 0.41 0.522
E*O -0.407 22.21 0.0001 *ox
E*P 0.089 1.00 0.317
E*Q 0.055 10.38 0.536
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F*M 0.008 0.01 0.930

F*N 0.027 0.10 0.755

F*O -0.138 2.58 0.108

F*p -0.076 0.75 0.388

F*Q 0.094 1.14 0.286

G*M 0.215 5.82 0.016 **
G*N -0.001 0.00 0.993

G*O 0.359 16.83 0.0001 *k
G*P -0.157 2.96 0.085

G*Q -0.322 12.52 0.0004 **
H*M 0.044 0.26 0.609

H*N 0.002 0.00 0.985

H*O -0.142 2.68 0.102

H*P 0.017 0.04 0.850

H*Q -0.094 1.14 0.284

*M 0.026 0.09 0.763

I*N -0.006 0.00 0.950

I*O -0.363 17.33 0.0001 **
I*p 0.235 6.99 0.008

I*Q 0.122 1.88 0.171

*M -0.075 0.88 0.349

J*N -0.133 2.80 0.094

J*O -0.028 0.17 0.676

J*P 0.129 2.65 0.104

J*Q 0.016 0.04 0.844

L*M 0.180 4.96 0.026

L*N 0.052 042 0.519

L*O 0.162 5.60 0.018

L*P 0.002 0.00 0.978

L*Q -0.027 0.11 0.7535

Scale o 0.620

5. Conclusion

Design of experiment has been used to improve quality. But it can also be used to
maintain or improve reliability as shown in the above examples. In design and analysis
of experiments for reliability, lifetimes may not be normally distributed. In this case, the
usual F test for the analysis of variance is not valid. In addition, we may have a
censored data in reliability experiment. This type of incomplete information must be
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accounted for when we analyze such data. A Weibull or lognormal regression is a
model that can take into account nonnormality and consoring. In this paper, Weibull and
lognormal regression models have been used to analyze data sets from the reliability
experiments. This approach has been found to be useful in identifying significant factors
in reliability data.

In this paper, we have used only Weibull or lognormal regression model in order to
identify significant factors. However, since we assume that the distribution of lifetimes
is Weibull or lognormal, we can also get appropriate measures for mean and standard
deviation in each run even when we have censored data and, after getting
signal-to—noise ratio from each run, we can identify significant factors. Therefore, it
would be of interest to compare the results from the two procedures.
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Appendix : A SAS program for Analysis of the Drill Bit Experiment

data one;
inputadbcfghiejl tl-t8 @Q@;
a=(2/3)*a-1,
cards;
0-1-1-1-1-1-1-1-1-11 128044150 2060 2 65 25
0-1-1-111 11 1 11 2680 125 120 2 165 100 795 307
01 11 1-1-1-1-1 1 12670 480 762 130 1422 280 670 130
1 111111 1-1-1 2655 9 7 27 3 15 90 480
-1-1 1 1-1-1 1 1-1 13000440 480 101260 5 1720 3000
-1-1 1 1 1 1-1-11-1-258 62370 45 2190 36 1030 16
1 1-1-1-1-11 1 1-13000258 20320425 8 950 3000
1 1-1-111-1-1-1 1800 45260250 1650 470 1250 70
-1 1-1 1-11-1 1-1-123000190 140 2100 3 450 840
-1 1-1 1 1-1 1-1 1 13000638 440 145 690 140 1180 1080
1-1-11-1 1 1 130000970 180 220 415 70 2630 3000
1-1 1-1 1-1 1-1-1-123000 180 870 310 2820 240 2190 1100
-1 11-1-11 1-1-11 3000612 1611 625 1720 195 1881 2780
-1 11-1 1-1-1 1 1-1 3000 1145 1060 198 1340 95 2509 345
1-1-11-11 1-1 1-1230003000794 40 160 50 495 3000
1-1-111-1-1 1-1 1680 140 809 275 1130 145 2025 125

o

W W W W N NN DN e e
—
|
—

data onel; set one; m=-1; n=-1; o=-1; p=-1; gq=-1i t=tl; run;
data one2; set one; m=-1;, n=-1; o=-1;, p=1; g=1; t=t2; run;

data one3; set one; m=-1; n=1; o=1; p=-1, q=1; t=t3; run;
data oned; set one; m=-1; n=1; o=1; p=1; g=-1; t=t4; run;
data one5; set one; m=1; n=-1; o=1; p=-1; g=1; t=th; run;
data one6; set one; m=1; n=-1; o=1; p=1; q=-1; t=t6; run;
data one?; set one; m=l; n=1; o=-1; p=-1;, g=-1; t=t7; run;
data one8; set one; m=1; n=1; o=-1; p=1; g=1; t=t8, run;
data two;

set onel one2 one3 oned one5 oneb one7 oned; drop tl1-t§;
if t=3000 then censor=1; else censor=0;

aj=axj;

am=a*m; an=a*n, ao=a*0; ap=a*p; ag=a*q;

bm=b*m; bn=b*n; bo=b*0; bp=b*p; bg=b*q;

CM=C*m; CN=C*n, CO=C*0; CP=C*DP; CQ=C*Q;
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dm=d*m; dn=d*n; do=d*o; dp=d+*p; dg=d*q;
em=e*m; en=e*n, eo=e*0; ep=e*p, eq=e*q,
fm=f*m; fn=f*n; fo=f*o, fp=f*p; fq=f*q;
gm=g*m; gn=g*n; go=g*o; gp=g*p; g4=g*q
hm=h*m; hn=h*n; ho=h*o; hp=h#*p; hq=hx*q;
im=i*m; in=i*n, io=i*o; ip=i*p; ig=i*q;
im=j*m; jn=j*n; jo=j*o; ip=j*p; 1Q=i*q;
Im=1*m; In=l*n; lo=l*0; Ip=l*p; lg=l*q;

run,

proc lifereg data=two;

model t*censor(l)= abcdefghijl mnopg

am an ao apagq bm bn bobpbg cmcencocpcq dmdn dodp dg
em en eo ep eq fm fn fo fp fq gm gn go gp gg hm hn ho hp hqg
im inio ip Iig jm jn jo jp jq Im Inlo Ip Iq;

run;



