• Title/Summary/Keyword: The Penetration Depth

Search Result 1,077, Processing Time 0.04 seconds

MECHANICAL PROPERTIES OF LASER-WELDED CAST TITANIUM AND TITANIUM ALLOY (원심 주조된 타이타늄과 타이타늄 합금의 레이저 용접 특성)

  • Yun, Mi-Kyung;Kim, Hyun-Seung;Yang, Hong-So;Vang, Mong-Sook;Park, Sang-Won;Park, Ha-Ok;Lee, Kwang-Min
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.5
    • /
    • pp.642-653
    • /
    • 2006
  • Purpose : The purpose of this study was to investigate the effect of the output energy(voltage) of laser welding on the strength and properties of joint of cast titanium(CP Gr II) and titanium alloy(Ti-6Al-4V). Material and method : Cast titanium and its alloy rods(ISO6871) were prepared and perpendicularly cut at the center of the rod. After the cut halves were fixed in a jig, and the joints welded with a laser-welding machine at several levels of output voltage of $200V{\sim}280V$. Uncut specimens served as the non-welded control specimens The pulse duration and pulse spot size employed in this study were 10ms and 1.0mm respectively. Tensile testing was conducted at a crosshead speed of 0.5mm/min. The ultimate tensile strength(MPa) was recorded, and the data (n=6) were statistically analyzed by one-way analysis of variance(ANOVA) and Scheffe's test at ${\alpha}$=0.05. The fracture surface of specimens investigated by scanning electron microscope (SEM). Vickers microhardness was measured under 500g load of 15seconds with the optimal condition of output voltage 280V. Results : The results of this study were obtained as follows, 1. When the pulse duration and spot size were fixed at 10ms and 1.0mm respectively, increasing the output energy(voltage) increased UTS values and penetration depth of laser welded to titanium and titanium alloy. 2. For the commercial titanium grade II, ultimate tensile strength(665.3MPa) of the specimens laser-welded at voltage of 280V were not statistically(p>0.05) different from the non-welded control specimens (680.2MPa). 3. For the titanium alloy(Ti-6Al-4V), ultimate tensile strength(988.3MPa) of the specimens laser-welded at voltage of 280V were statistically(p<0.05) different from the non-welded control specimens (665.0MPa). 4. The commercial titanium grade II and titanium alloy(Ti-6Al-4V) were Vickers microhardness values were increased in the fusion zone and there were no significant differences in base metal, heat-affected zone.

Growth and yield responses of rice varieties to various soil water deficit conditions under different soil types

  • Kikuta, Mayumi;Samejima, Hiroaki;Magoti, Rahab;Kimani, John M.;Yamauchi, Akira;Makihara, Daigo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.322-322
    • /
    • 2017
  • To avoid drought stress under rainfed upland conditions, it is important for rice to efficiently utilize water at shallow soil layers supplied by rainfall, and access to water retained in deer soil layers. The root developmental characteristics of rice, which play important role in the adaptability to drought conditions, vary depending on the variety. Moreover, water availability for plant differs depending on the soil types that have different physical properties such as water holding capacity, permeability, capillary force, penetration resistance, etc. In this study, we evaluated growth and yield responses of rice varieties to various soil water deficit conditions under three different soil types. The experiment was conducted in a plastic greenhouse at the Kenya Agricultural and Livestock Research Organization-Mwea from October 2016 to January 2017. Two upland varieties (NERICA 1 and 4) and one lowland variety (Komboka) were grown in handmade PVC pots (15.2 cm diameter and 85.0 cm height) filled with three different types of soil collected from major rice-growing areas of the country, namely black cotton (BC), red clay (RC), and sandy clay (SC). Three watering methods, 1) supplying water only from the soil surface (W1), 2) supplying water only from the bottom of the pots (W2), and 3) supplying water both from the soil surface and the bottom of pots (W3), were imposed from 40 days after sowing to maturity. Soil water content (SWC) at 20, 40, and 60 cm depths was measured regularly. At the harvesting stage, aboveground and root samples were collected to determine total dry weight (TDW), grain yield, and root length at 0-20, 20-40, 40-60, and 60-80 cm soil layers. Irrespective of the watering methods, the greatest root development was obtained in RC, while that in BC was less than other two soils. In BC, the degree of yield reduction under W1 was less than that in RC and SC, which could be attributed to the higher water holding capacity of BC. In RC, the growth and yield reduction observed in all varieties under W1 was attributed to the severe drought stress. On the other hand, under W2, SWC at the shallow soil depth in RC was maintained because of its higher capillary force compared with BC and SC. As the result, growths and yields in RC were not suppressed under W2. In SC, deep root development was not promoted by W2 irrespective of the varieties, which resulted in significant yield losses. Under W1, the rice growth and yield in SC was decreased although shallow root development was enhanced, and the stomatal conductance was maintained higher than RC. It was suspected that W1 caused nutrients leaching in SC because of its higher permeability. Under rainfed conditions, growth and yield of rice can be strongly affected by soil types because dynamics of soil water conditions change according to soil physical properties.

  • PDF

Dynamic Analyses on Embedded Piles Based on Wave Equation (파동방정식에 근거한 매입말뚝의 동적 분석)

  • Seo, Mi-Jeong;Park, Jong-Bae;Park, Yong-Boo;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.11
    • /
    • pp.5-13
    • /
    • 2015
  • For the bearing capacity evaluation, dynamic pile tests instead of static pile tests have been commonly used in embedded piles, which are known to have low noise and low vibration construction method. The objective of this study is to analyze the bearing capacity and penetration behaviors of embedded piles, which are constructed in different ground conditions, by using force and velocity signals obtained in the final blows during construction of embedded piles. For the dynamic pile analyses, the CAse Pile Wave Analysis Program (CAPWAP) and Wave Equation Analysis of Piles (WEAP) have been commonly used. In this study, the CAPWAP and WEAP are used for the analyses of the dynamic pile tests, which are conducted on embedded piles. The input values, output values, and force-velocity graphs of CAPWAP determined by analyzing the measured force-velocity signals are investigated. In addition, similar force-velocity singals are obtained from the WEAP by analyzing the input values of the WEAP. Considering the subsurface investigation results around the pile tips, if the N-value increases exponentially along the depth, toe quake value should be small, and therefore large bearing capacity is identified. On the contrary, if the N-value increases linearly, the bearing capacity is small because of large toe quake value. Furthermore, the stiffness of hammer cushion and pile cushion, which is difficult to find correct values, is recommended lower than 500 kN/mm. This study demonstrates that the results of WEAP may be similar to those of CAPWAP and the WEAP can be used to estimate the bearing capacity of embedded piles.

Thickness Evaluation of the Aluminum Using Pulsed Eddy Current (펄스 와전류를 이용한 알루미늄 두께 평가)

  • Lee, Jeong-Ki;Suh, Dong-Man;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.1
    • /
    • pp.15-19
    • /
    • 2005
  • Conventional eddy current testing has been used for the detection of the defect-like fatigue crack in the conductive materials, such as aluminum, which uses a sinusoidal signal with very narrow frequency bandwidth, Whereas, the pulsed eddy current method uses a pulse signal with a broad bandwidth. This can allow multi-frequency eddy current testing, and the penetration depth is greater than that of the conventional eddy current testing. In this work, a pulsed eddy current instrument was developed for evaluating the metal loss. The developed instrument was composed of the pulse generator generating the maximum square pulse voltage of 40V, an amplifier controlled up to 52dB, an A/D converter of 16 bit and the sampling frequency of 20 MHz, and an industrial personal computer operated by the Windows program. A pulsed eddy current probe was designed as a pancake type in which the sensing roil was located inside the driving roil. The output signals of the sensing roil increased rapidly wich the step pulse driving voltage かn off, and the latter part of the sensing coil output voltage decreased exponentially with time. The decrement value of the output signals increased as the thickness of the aluminum test piece increased.

Secondary electron emission characteristics of a thermally grown $SiO_2$ thin layer (건식 열산화로 성장시킨 $SiO_2$박막의 이차전자 방출 특성)

  • 정태원;유세기;이정희;진성환;허정나;이휘건;전동렬;김종민
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.31-36
    • /
    • 2001
  • The secondary election emission (SEE) yields for the thermally grown $SiO_2$ thin layers were measured by varying the thickness of the $SiO_2$ layer and the primary current. $SiO_2$ thin layers were thermally grown in a furnace at $930^{\circ}C$, whose thickness varied to be 5.8 nm, 19 nm, 43 nm, 79 nm, 95 nm, and 114 nm. When the $SiO_2$ layers were thinner than 43 nm, it was found that SEE curves followed the universal curve. However, for samples with a $SiO_2$ layer thicker than 79 nm, the SEE curves exhibited two maxima and the values of SEE yields were reduced. Additionally, as the current of primary electrons increased, the SEE yields were reduced. In this experiment, the maximum value of the SEE yield for $SiO_2$ layers was obtained to be 3.35 when the thickness of $SiO_2$ layer was 19 nm, with the primary electron energy 300 eV and the primary electron current 0.97 $\mu\textrm{A}$. The penetration and escape depth of an electron in the $SiO_2$ layers were calculated at the primary electron energy for the maximum value of the SEE yield and from these depths, it was calculated that the thickness of the $SiO_2$layer.

  • PDF

Relationships between Airborne Droplet and Impression Diameters in Small Droplets (작은 분무입자(噴霧粒子)에 있어서 원형분무입자(原形噴霧粒子) 직경(直徑)과 살포(撒布)된 입자직경(粒子直徑)의 관계(關係))

  • Lee, Sang-Woo
    • Korean Journal of Agricultural Science
    • /
    • v.6 no.2
    • /
    • pp.192-197
    • /
    • 1979
  • Spread factors were tried to determine the diameter of airborne droplet emitted: from the sprayer by the measurements of airborne droplet diameter emitted from the uniform size droplet producer and impression diameter on Kromekote card or Eucalypt's leaf in the different dilute concentration with Geigy Red Herbicide Dye from 0.5% to 2% by weight. The results abtained were as follows; The general form of the equation in the relationship between airborne droplet and impression diameter on Kromekote card or Eucalypt's leaf was an exponential equation as follows; $$Y=aX^b$$ which gave a linear relation on log-log graph paper. The spread factor seemed to be larger in the thin dilute concentration than in the thick dilute concentration. The spread factor was remarkably smaller on Eucalypt's leaf than on Kromekote card due to the penetration of liquid into the leaf and the stomata of the epidermis. The calculated equation of the mean depth of the droplet sprayed on Eucalypt's leaf was the same form as $Y=aX^b$, which implied that the spray liquid was distributed in surplus in accordance with the diameter of the droplet larger than the optimum size droplet to control insect and disease.

  • PDF

A Study on the Modified N-value by the Comparison Plate Load Test with Calculated Settlement (평판재하시험과 이론적 침하량 예측식의 비교를 통한 N치 보정방법 검토)

  • Ahn, Chang-Yoon;Kim, Won-Cheul;Hwang, Young-Cheol;Nam, Hyun-Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.3
    • /
    • pp.25-34
    • /
    • 2005
  • The governing design point of shallow foundation is not its bearing capacity but its settlemen and N-value by the SPT is one of the key parameters for settlement estimation. However, if the N-value is more than 50/30, such as 50/10 or 50/20, the N-vlaues are not blow count of 30cm depth penetration. In these cases, the estimated settlements have big difference with the measured values because the applied maximum N value for the settlement estimation is 50. Therefore, in this study, the modified method for N-value estimation is suggested. The settlements by four methods, which are based on Elastic Theory with application of modified N-value, are compared with the Origina Plate Load Test data. The same comparision was carried out with another seven Empirical Methods. The result of this study showed that the error range of settlement is decreased from 260.4~2136.5% to 20.3~272.7%. Among four methods which are based on Elastic Theory, the original method by Elastic Theory is the most accurate with the application of modified N-value. Among Empirical Methods, Terzaghi-Peck's(1948, 1967) modified method 1 is the most accurate with the application of modified N-value. The differences between the original method by Elastic Theory and Terzaghi-Peck's(1948, 1967) modified method 1 are neglectable.

  • PDF

Comparison with SAR Patterns of Biological Objects Contacted with Coaxial Waveguide Antenna Using MUR and GPML ABCs in the FDTD Method (유한차분법에서 MUR과 GPML 흡수경계조건을 이용한 동축 도파관 안테나에 접촉된 생체의 SAR 패턴 비교)

  • 구성모;권광희;이창원;원철호;조진호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.2
    • /
    • pp.149-158
    • /
    • 1998
  • The SAR patterns of biological objects contacted with coaxial waveguide antennal has been investigated, in which the biological object was modeled by a homogeneous and four-layered lossy human body. We derived the finite-difference time-domain(FDTD) algorithm and equation of MUR and generalized perfectly matched layer(GPML) ABCs in cylindrical coordination. The coupling between coaxial waveguide antenna and a biological object was analyzed by use of MUR and GPML ABCs in the FDTD method to obtain the absorbed power patterns in the media. The specific absorption rates (SAR) distribution which was corresponding to the temperature distribution was calculated in each region by use of the steady-state response in the FDTD method. The SAR patterns of the FDTD method using MUR absorbing boundary conditions(ABCs) was compared with those of the FDTD method using GPML ABCs. The comparison exhibits that the penetration depth of the SAR patterns using MUR ABCs is deeper than that of the SAR patterns using GPML ABCs because of loss in free space. However, the spread in the lateral directions of the SAR patterns using GPML ABCs is smaller than of the SAR patterns using MUR ABCs.

  • PDF

Development and Application of Penetration Type Field Shear Wave Apparatus (관입형 현장 전단파 측정장치의 개발 및 적용)

  • Lee, Jong-Sub;Lee, Chang-Ho;Yoon, Hyung-Koo;Lee, Woo-Jin;Kim, Hyung-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.12
    • /
    • pp.67-76
    • /
    • 2006
  • The reasonable assessment of the shear stiffness of a dredged soft ground and soft clay is difficult due to the soil disturbance. This study addresses the development and application of a new in-situ shear wave measuring apparatus (field velocity probe: FVP), which overcomes several of the limitations of conventional methods. Design concerns of this new apparatus include the disturbance of soils, cross-talking between transducers, electromagnetic coupling between cables, self acoustic insulation, the constant travel distance of S-wave, the rotation of the transducer, directly transmitted wave through a frame from transducer to transducer, and protection of the transducer and the cable. These concerns are effectively eliminated by continuous improvements through performing field and laboratory tests. The shear wave velocity of the FVP is simply calculated, without any inversion process, by using the travel distance and the first arrival time. The developed FVP Is tested in soil up to 30m in depth. The experimental results show that the FVP can produce every detailed shear wave velocity profiles in sand and clay layers. In addition, the shear wave velocity at the tested site correlates well with the cone tip resistance. This study suggests that the FVP may be an effective technique for measuring the shear wave velocity in the field to assess dynamic soil properties in soft ground.

The Effects of the Spat Planting Time and Environmental Factors in the Arkshell, Scapharca broughtonii Schrenck Culture (피조개(Scapharca broughtonii Schrenck) 양식시 살포시기와 환경 특성의 영향)

  • Kim, Jeong-Bae;Lee, Sang-Yong;Jung, Choon-Goo;Jung, Chang-Su;Son, Sang-Gyu
    • Journal of Aquaculture
    • /
    • v.20 no.1
    • /
    • pp.31-40
    • /
    • 2007
  • To find out the effect of the spat planting time and environmental factors in the arkshell, Scapharca broughtonii (Schrenck), we investigated the growth, survival rate of arkshell and habitat characteristics in Gamak Bay, Yeoja Bay and Saryang Island. We planted artificial spats of arkshell in Gamak Bay and Yeoja Bay at November 2004, and also planted domestic and Chinese natural spats in Saryang Island at March 2005. We measured growth, survival rate of arkshell, physiochemical parameters of the water mass (water temperature, salinity, dissolved oxygen, nutrients and chlorophyll a) and characteristics of the sediment (oxygen penetration depth, oxygen microprofiles, ignition loss and chemical oxygen demand) by monthly. The cumulative survival ratio of arkshell in Gamak Bay was the highest at December, whereas the ratio of arkshell in Yeoja Bay was recorded as 0% at October. The monthly growth rates of arkshell length in Gamak Bay and Yeoja Bay were the highest in May and the growth rate of the Korean arkshell in Saryang Island was higher than Chinese ones significantly. The high mortality (> 65%) of the arkshell in Yeoja Bay during summer probably caused by high water temperature, inflow of low salinity water, and low dissolved oxygen concentration in sediment. The concentrations of nutrient and sediment COD were considered to play an important role in the monthly survival ratio of arkshell in Gamak Bay and Sarayng Island. We suggest that the growth and mortality of arkshell might be influenced to the planting time of spat and the habitat characteristics.