Today, most web pages are being created in the blogspace or evolving into the blogspace. A blog entry (blog page) includes non-traditional features of Web pages, such as trackback links, bloggers' authority, tags, and comments. Thus, the traditional rank algorithms are not proper to evaluate blog entries because those algorithms do not consider the blog specific features. In this paper, a new algorithm called "Blog-Rank" is proposed. This algorithm ranks blog entries by calculating bloggers' reputation scores, trackback scores, and comment scores based on the features of the blog entries. This algorithm is also applied to searching for information related to the users' queries in the blogspace. The experiment shows that it finds the much more relevant information than the traditional ranking algorithms.
The user needs to find the answer to your question is growing fast at the service using collective intelligent knowledge. In the previous researches, it was proven that the non-text information like view counting, referrer number, and number of answer is good in evaluating answers. There were also many works about evaluating answers using the various kinds of word dictionaries. In this work, we propose new method to evaluate answers to question effectively using user reputation that estimated by the social activity. We use a modified PageRank algorithm for estimating user reputation. We also use the similarity between question and answer. From the result of experiment in the Naver GisikiN corpus, we can see that the proposed method gives meaningful performance to complement the answer selection rate.
Journal of the Korea Society of Computer and Information
/
v.22
no.12
/
pp.117-123
/
2017
The personalized search algorithm is a search system that analyzes the user's IP, cookies, log data, and search history to recommend the desired information. As a result, users are isolated in the information frame recommended by the algorithm. This is called 'Filter bubble' phenomenon. Most of the personalized data can be deleted or changed by the user, but data stored in the service provider's server is difficult to access. This study suggests a way to neutralize personalization by keeping on sending random query words. This is to confuse the data accumulated in the server while performing search activities with words that are not related to the user. We have analyzed the rank change of the URL while conducting the search activity with 500 random query words once using the personalized account as the experimental group. To prove the effect, we set up a new account and set it as a control. We then searched the same set of queries with these two accounts, stored the URL data, and scored the rank variation. The URLs ranked on the upper page are weighted more than the lower-ranked URLs. At the beginning of the experiment, the difference between the scores of the two accounts was insignificant. As experiments continue, the number of random query words accumulated in the server increases and results show meaningful difference.
This study aims to measure Korea's global competitiveness in intelligent information technology, which is the core technology of the 4th industrial revolution. For analysis, we collect patents of each field and prior patents cited by them, which are applied at the U.S. Patent Office (USPTO) between 2010 and 2018 from PATSTAT Online. A global knowledge transfer network was established by grouping citing- and cited-relationships at a national level. The in-degree centrality is used to evaluate technology acceptance, which indicates the process of absorbing existing technological knowledge to create new knowledge in each field. Second, to evaluate the impact of existing technological knowledge on the creation of new one, the out-degree centrality is investigated. Third, we apply the PageRank algorithm to qualitatively and quantitatively investigate the importance of the relationships between countries. As a result, it is confirmed through all the indicators that the AI sector is currently the least competitive.
Journal of Information Technology and Architecture
/
v.9
no.4
/
pp.413-422
/
2012
Many researchers have been studied to reveal human natural language to let machine understand its meaning by text based, page rank based or more. Particularly, it has been considered that URL and HTML Tag information in web documents are attracting people' attention again to analyze huge amount of web document automatically. In this paper, we propose a STW (Semantic Term Weight) approach based on syntactic and linguistic structure of web documents in order to classify what genres are. For the evaluation, we analyzed more than 1,000 documents from 20-Genre-collection corpus for training the documents based on SVM algorithm. Afterwards, we tested KI-04 corpus to evaluate performance of our proposed method. This paper measured their accuracy by classifying them into an experiment using STW and one without u sing STW. As the results, the proposed STW based approach showed approximately 10.2% which Is higher than one without use of STW.
Journal of Information Technology Applications and Management
/
v.11
no.4
/
pp.49-60
/
2004
While the World-Wide Web offers an incredibly rich base of information, organized as a hypertext it does not provide a uniform and efficient way to retrieve specific information. Therefore, it is needed to develop an efficient web crawler for gathering useful information in acceptable amount of time. In this paper, we studied the order in which the web crawler visit URLs to rapidly obtain more important web pages. We also developed an internet agent for efficient web crawling using hyperlink structure and fitness of hypertext documents. As a result of experiment on a website. it is shown that proposed agent outperforms other web crawlers using BackLink and PageRank algorithm.
Proceedings of the Korea Information Processing Society Conference
/
2011.04a
/
pp.1405-1408
/
2011
소프트웨어 품질 측정은 소프트웨어 공학의 필수적인 요소이다. 소프트웨어 품질 척도 중 하나인 결합도는 모듈간의 얼마나 강하게 연결되어있는지를 나타낸다. 결합도는 소프트웨어의 결함-경향성, 모듈화, 재사용성, 변경-경향성 등 다양한 목적으로 사용된다. 기존의 결합도 척도들은 메소드호출 횟수에 의해서 결정되는데, 이는 메소드의 가중치를 고려하지 않기 때문에 결합도를 정확히 측정 하지 못한다. 본 논문은 페이지랭크 알고리즘을 이용하여 메소드의 가중치를 측정하고, 이를 이용한 결합도 척도 개선 방법에 대해 제안한다. 본 논문의 유효성을 검증하기 위하여, 4 개의 오픈 소스 프로젝트를 대상으로 기존의 방법과 개선된 방법으로 결합도 척도 3 개를 측정하였다. 개선된 결합도 3 개는 유지보수의 척도로 사용되는 변경-경향성(Change-Proneness)과의 상관계수가 기존의 결합도 척도에 비하여 눈의 띄게 향상되었다. 따라서 개선된 결합도 척도는 소프트웨어 품질을 더 정확하게 측정할 수 있다.
How can we effectively compress big graphs composed of billions of edges? By concentrating non-zeros in the adjacency matrix through vertex rearrangement, we can compress big graphs more efficiently. Also, we can boost the performance of several graph mining algorithms such as PageRank. SlashBurn is a state-of-the-art vertex rearrangement method. It processes real-world graphs effectively by utilizing the power-law characteristic of the real-world networks. However, the original SlashBurn algorithm displays a noticeable slowdown for large-scale graphs, and cannot be used at all when graphs are too large to fit in a single machine since it is designed to run on a single machine. In this paper, we propose a distributed SlashBurn algorithm to overcome these limitations. Distributed SlashBurn processes big graphs much faster than the original SlashBurn algorithm does. In addition, it scales up well by performing the large-scale vertex rearrangement process in a distributed fashion. In our experiments using real-world big graphs, the proposed distributed SlashBurn algorithm was found to run more than 45 times faster than the single machine counterpart, and process graphs that are 16 times bigger compared to the original method.
Journal of Korea Society of Digital Industry and Information Management
/
v.16
no.1
/
pp.79-92
/
2020
As the number of systems increases and the network size increases, automated attack prediction systems are urgently needed to respond to cyber attacks. In this study, we developed four types of information gathering sensors for collecting asset and vulnerability information, and developed technology to automatically generate attack graphs and predict attack targets. To improve performance, the attack graph generation method is divided into the reachability calculation process and the vulnerability assignment process. It always keeps up to date by starting calculations whenever asset and vulnerability information changes. In order to improve the accuracy of the attack target prediction, the degree of asset risk and the degree of asset reference are reflected. We refer to CVSS(Common Vulnerability Scoring System) for asset risk, and Google's PageRank algorithm for asset reference. The results of attack target prediction is displayed on the web screen and CyCOP(Cyber Common Operation Picture) to help both analysts and decision makers.
Today, due to the 4th industrial revolution and extensive R&D funding, domestic companies have begun to possess world-class industrial technologies and have grown into important assets. The national government has designated it as a "national core technology" in order to protect companies' critical industrial technologies. Particularly, technology leaks in the shipbuilding, display, and semiconductor industries can result in a significant loss of competitiveness not only at the company level but also at the national level. Every year, there are more insider leaks, ransomware attacks, and attempts to steal industrial technology through industrial spy. The stolen industrial technology is then traded covertly on the dark web. In this paper, we propose a system for detecting industrial technology leaks in the dark web environment. The proposed model first builds a database through dark web crawling using information collected from the OSINT environment. Afterwards, keywords for industrial technology leakage are extracted using the KeyBERT model, and signs of industrial technology leakage in the dark web environment are proposed as quantitative figures. Finally, based on the identified industrial technology leakage sites in the dark web environment, the possibility of secondary leakage is detected through the PageRank algorithm. The proposed method accepted for the collection of 27,317 unique dark web domains and the extraction of 15,028 nuclear energy-related keywords from 100 nuclear power patents. 12 dark web sites identified as a result of detecting secondary leaks based on the highest nuclear leak dark web sites.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.