• 제목/요약/키워드: The Obstacles

검색결과 2,723건 처리시간 0.033초

A Study of the Obstacle Avoidance for a Quadruped Walking Robot Using Genetic and Fuzzy Algorithm

  • Lee, Bo-Hee;Kong, Jung-Shik;Kim, Jin-Geol
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.228-231
    • /
    • 2003
  • This paper presents the leg trajectory generation for the quadruped robot with genetic-fuzzy algorithm. To have the nobility even at uneven terrain, a robot is able to recognize obstacles, and generates moving path of body that can avoid obstacles. This robot should have its own avoidance algorithm against obstacles, forwarding to target without collision. During walking period, n robot recognizes obstacle from external environment with a PSD and some interface, and this obstacle information is converted into proper the body rotation angle by fuzzy inference engine. After this process, we can infer the walking direction and walking distance of body, and finally can generate the optimal Beg trajectory using genetic algorithm. All these methods are verified with PC simulation program, and implemented to SERO-V robot.

  • PDF

Autonomous Navigation of an Underwater Robot in the Presence of Multiple Moving Obstacles

  • Kwon, Kyoung-Youb;Joh, Joong-Seon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권2호
    • /
    • pp.124-130
    • /
    • 2005
  • Obstacle avoidance of underwater robots based on a modified virtual force field algorithm is proposed in this paper. The VFF(Virtual Force Field) algorithm, which is widely used in the field of mobile robots, is modified for application to the obstacle avoidance of underwater robots. This Modified Virtual Force Field(MVFF) algorithm using the fuzzy lgoc can be used in moving obstacles avoidance. A fuzzy algorithm is devised to handle various situations which can be faced during autonomous navigation of underwater robots. The proposed obstacle avoidance algorithm has ability to handle multiple moving obstacles. Results of simulation show that the proposed algorithm can be efficiently applied to obstacle avoidance of the underwater robots.

스테레오영상의 가상의 탑뷰변환과 동적계획법에 의한 도로상의 장애물 검출 (Generic Obstacle Detection on Roads by Dynamic Programming and Remapping of Stereo Images to a Virtual Top-View)

  • 이기용;이준웅
    • 제어로봇시스템학회논문지
    • /
    • 제11권5호
    • /
    • pp.418-422
    • /
    • 2005
  • In this paper, a novel algorithm capable of detecting generic obstacles on a flat surface is proposed. The algorithm fundamentally exploits a distortion phenomena taken place in remapping process of original stereo images to a virtual top-view. Based on the distortion phenomena, we construct stereo polar histograms of edge maps, detect peaks on them, and search for matched peaks on both histograms using a Dynamic Programming (DP). Eventually, the searched corresponding peaks lead to estimate obstacles' positions. The advantages of the proposed algorithm are that it is not largely affected by an intensity difference between a pair of stereo images and does not depend on the typical stereo matching methodologies. Furthermore, the algorithm identifies the obstacles' positions quite robustly.

영역 확장을 이용한 이동 로봇의 경로 설정 (Path Planning Algorithm for Mobile Robot using Region Extension)

  • 곽재혁;임준홍
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.249-251
    • /
    • 2005
  • In this paper, an algorithm of path planning and obstacle avoidance for mobile robot is proposed. We call the proposed method Random Access Sequence(RAS) method. In the proposed method, a small region is set first and numbers are assigned to its neighbors. By processing assigned numbers all regions are covered and then the path from start to destination is selected by these numbers. The RAS has an advantage of fast planning because of simple operations. This implies that new path selection may be possible within a short time and helps a robot to avoid obstacles in any direction. The algorithm can be applied to unknown environments. When moving obstacles appear, a mobile robot avoids obstacles reactively. then new path is selected by RAS.

  • PDF

원형작업공간의 기하투영에 의한 일차 매개 곡선을 이용한 충돌회피 궤적 계획 (A collision-free path planning using linear parametric curve based on circular workspace geometry mapping)

  • 남궁인
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.896-899
    • /
    • 1996
  • A new algorithm for planning a collision free path is developed based on linear parametric curve. A collision-free path is viewed as a connected space curve in which the path consists of two straight curve connecting start to target point. A single intermediate connection point is considered in this paper and is used to manipulate the shape of path by organizing the control point in polar coordinate (.theta.,.rho.). The algorithm checks interference with obstacles, defined as GM (Geometry Mapping), and maps obstacles in Euclidean Space into images in CPS (Connection Point Space). The GM for all obstacles produces overlapping images of obstacle in CPS. The clear area of CPS that is not occupied by obstacle images represents collision-free paths in Euclidean Space. Any points from the clear area of CPS is a candidate for a collision-free path. A simulation of GM for number of cases are carried out and results are presented including mapped images of GM and performances of algorithm.

  • PDF

The Collision Avoidance Method in the Chaotic Robot with Hyperchaos Path

  • Youngchul Bae;Kim, Juwan;Park, Namsup
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2003년도 추계종합학술대회
    • /
    • pp.584-588
    • /
    • 2003
  • In this paper, we propose a method to avoid obstacles that have unstable limit cycles in a Hyperchaos trajectory surface. We assume all obstacles in the chaos trajectory surface have a Van der Pol equation with an unstable limit cycle. When a chaos robot meets an obstacle in a hyper-chaos equation trajectory, the obstacle reflects the robot. We also show computer simulation result of hyperchaos equation trajectories with one or more Van der Pol obstacles.

  • PDF

Hierarchical Fuzzy Motion Planning for Humanoid Robots Using Locomotion Primitives and a Global Navigation Path

  • Kim, Yong-Tae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제10권3호
    • /
    • pp.203-209
    • /
    • 2010
  • This paper presents a hierarchical fuzzy motion planner for humanoid robots in 3D uneven environments. First, we define both motion primitives and locomotion primitives of humanoid robots. A high-level planner finds a global path from a global navigation map that is generated based on a combination of 2.5 dimensional maps of the workspace. We use a passage map, an obstacle map and a gradient map of obstacles to distinguish obstacles. A mid-level planner creates subgoals that help the robot efficiently cope with various obstacles using only a small set of locomotion primitives that are useful for stable navigation of the robot. We use a local obstacle map to find the subgoals along the global path. A low-level planner searches for an optimal sequence of locomotion primitives between subgoals by using fuzzy motion planning. We verify our approach on a virtual humanoid robot in a simulated environment. Simulation results show a reduction in planning time and the feasibility of the proposed method.

충돌회피환경에서의 퍼지 규칙 기반 멀티 모바일 로봇 시스템 (Multi-Mobile Robot System with Fuzzy Rule based Structure in Collision avoidance)

  • 김동원;이종호
    • 제어로봇시스템학회논문지
    • /
    • 제16권3호
    • /
    • pp.233-238
    • /
    • 2010
  • This paper describes a multi-mobile robot system with fuzzy rule based structure in collision avoidance. Collision avoidance is an important function to perform a given task collaboratively and cooperatively in multi-mobile robot environments. So the important but challenging problem is handled in this paper. Considered obstacles for collision avoidance between multi mobile robots are static, dynamic, or both of them at the same time. Using the fuzzy rule based structure, distance and angle from a robot to obstacles are described as fuzzy linguistic values and steering angle for the robot are updated from the collision environments. As a result, the multi-mobile robot can modify a global path from a robot itself to its own target. In addition, avoiding collision with static or dynamic obstacles for the robot system can be achieved. Simulation based experimental results are given to show usefulness of this method.

영상 처리를 통한 자율 이동로봇의 장애물 회피 (Obstacle Avoidance of an Autonomous Mobile Robot Using Image Processing)

  • 이규윤;김주웅;임중규;엄기환
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.943-944
    • /
    • 2006
  • In this paper, we implemented the autonomous mobile robot which can recognize and avoid obstacles, then move to its destination using a camera and ultrasonic sensors. The mobile robot can avoid both stationary obstacles with a camera and moving obstacles with ultrasonic sensors. It can find the self-location with the map-based system, that is, it attempts to localize by collecting sensor data, then updating some belief about its position with respect to a map of the environment.

  • PDF

Infusing Web-based Digital Resources into the Middle School Science Classroom: Strategies and Challenges

  • LEE, Soo-Young;LEE, Youngmin
    • Educational Technology International
    • /
    • 제12권1호
    • /
    • pp.47-66
    • /
    • 2011
  • This study examines strategies and obstacles encountered in infusing digital resources in the middle school mathematics and science classroom. It draws on data from principals, technology coordinators and math and science teachers in three urban middle schools in United States. All three of these schools have recently invested heavily in technology hardware and high speed Internet connectivity and as such they provide an opportunity to look beyond well documented obstacles such as outdated computers and poor Internet access. The logistical, preparatory, pedagogical and curricular challenges encountered by teachers within the study have important implications for professional development efforts aimed at improving science education through the integration of Web-based resources.