• Title/Summary/Keyword: The Han River basin

Search Result 569, Processing Time 0.032 seconds

Characteristics of Chlorination Byproducts and Aldehyde Occurrence in Bottled Tap Water (수돗물 병입수 중 염소소독부산물 및 aldehyde의 발생 특성)

  • Lee, Youn-Hee;Park, Ju-Hyun;Kim, Hyun-Koo;Ahn, Kyung-Hee;Kim, Tae-Seung;Kim, Dong-Hoon;Kwon, Oh-Sang
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.5
    • /
    • pp.754-761
    • /
    • 2012
  • Several drinking water treatment plants (DWTPs) produce the bottled tap waters (BTWs) as pilot production and provide them for noncommercial use. In 2008, acetaldehyde and chloral hydrate were detected in some BTWs and the public worry over the safety of the water. In this study, the BTWs produced from 7 DWTPs were tested for 13 chemicals including disinfection byproducts (DBPs). The level of four trihalomethanes (THMs) were increased up to 15 days. The average concentration of them was 0.0075 mg/L at the time of bottling and it was increased to 0.0214 mg/L after 15 days. The average acetaldehyde concentration was 0.0406 mg/L at the time of bottling but it was went up to 0.2251 mg/L after 11 days and then decreased. Although the initial concentrations of DBPs were below the drinking water standard, we also traced them at different storage conditions. Temperature affected the formations of THMs and acetaldehyde concentrations significantly. While the average concentration of THMs ranged from 0.0113 to 0.0182 mg/L at $25^{\circ}C$, it was increased to 0.0132 ~ 0.0256 mg/L at $50^{\circ}C$. In case of acetaldehyde, concentration ranged from 0.0901 to 0.2251 mg/L at $25^{\circ}C$, it was increased to 0.3394 ~ 1.0591 mg/L at $50^{\circ}C$. Throughout the tests with 7 BTWs samples, none of the chemicals was exceeded the drinking water standard of Korea. Therefore, it is recommended to avoid the exposure of BTWs to sunlight or high temperature during distribution and storage.

Projection of water temperature and stratification strength with climate change in Soyanggang Reservoir in South Korea (기후변화에 따른 소양호 수온 및 성층강도 변화 예측)

  • Yun, Yeojeong;Park, Hyungseok;Chung, Sewoong
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.3
    • /
    • pp.234-247
    • /
    • 2019
  • In a deep lake and reservoir, thermal stratification is of great importance for characteristics of hydrodynamic mixing of the waterbody, and thereby influencesvertical distribution of dissolved oxygen, substances, nutrients, and the phytoplankton community. The purpose of this study, was to project the effect of a future climate change scenario on water temperature, stratification strength, and thermal stability in the Soyanggang Reservoir in the Han River basin of South Korea, using a suite of mathematical models; SWAT, HEC-ResSim, and CE-QUAL-W2(W2). W2 was calibrated with historical data observed 2005-2015. Using climate data generated by HadGEM2-AO with the RCP 4.5 scenario, SWAT predicted daily reservoir inflow 2016-2070, and HEC-ResSim simulated changes in reservoir discharge and water level, based on inflow and reservoir operation rules. Then, W2 was applied, to predict long-term continuous changes of water temperature, in the reservoir. As a result, the upper layer (5 m below water surface) and lower layer (5 m above bottom) water temperatures, were projected to rise $0.0191^{\circ}C/year$(p<0.05) and $0.008^{\circ}C/year$(p<0.05), respectively, in response to projected atmospheric temperature rise rate of $0.0279^{\circ}C/year$(p<0.05). Additionally, with increase of future temperature, stratification strength of the reservoir is projected to be stronger, and the number of the days when temperature difference of the upper layer and the lower layer becomes greater than $5^{\circ}C$, also increase. Increase of water temperature on the surface of the reservoir, affected seasonal growth rate of the algae community. In particular, the growth rate of cyanobacteria increased in spring, and early summer.

A study on determining threshold level of precipitation for drought management in the dam basin (댐 유역 가뭄 관리를 위한 강수량 임계수준 결정에 관한 연구)

  • Lee, Kyoung Do;Son, Kyung Hwan;Lee, Byong Ju
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.4
    • /
    • pp.293-301
    • /
    • 2020
  • This study determined appropriate threshold level (cumulative period and percentage) of precipitation for drought management in dam basin. The 5 dam basins were selected, the daily dam storage level and daily precipitation data were collected. MAP (Mean Areal Precipitation was calculated by using Thiessen polygon method, and MAP were converted to accumulated values for 6 cumulative periods (30-, 60-, 90-, 180-, 270-, and 360-day). The correlation coefficient and ratio of variation coefficient between storage level and MAP for 6 cumulative periods were used to determine the appropriate cumulative period. Correlation of cumulative precipitation below 90-day was low, and that of 270-day was high. Correlation was high when the past precipitation during the flood period was included within the cumulative period. The ratio of variation coefficient was higher for the shorter cumulative period and lower for the longer in all dam, and that of 270-day precipitation was closed to 1.0 in every month. ROC (Receiver Operating Characteristics) analysis with TLWSA (Threshold Line of Water Supply Adjustment) was used to determine the percentage of precipitation shortages. It is showed that the percentage of 270-day cumulative precipitation on Boryung dam and other 4-dam were less than 90% and 80% as threshold level respectively, when the storage was below the attention level. The relationship between storage and percentage of dam outflow and precipitation were analyzed to evaluate the impact of artificial dam operations on drought analysis, and the magnitude of dam outflow caused uncertainty in the analysis between precipitation and storage data. It is concluded that threshold level should be considered for dam drought analysis using based on precipitation.

Assessment of Climate and Vegetation Canopy Change Impacts on Water Resources using SWAT Model (SWAT 모형을 이용한 기후와 식생 활력도 변화가 수자원에 미치는 영향 평가)

  • Park, Min-Ji;Shin, Hyung-Jin;Park, Jong-Yoon;Kang, Boo-Sik;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.5
    • /
    • pp.25-34
    • /
    • 2009
  • The objective of this study is to evaluate the future potential climate and vegetation canopy change impact on a dam watershed hydrology. A $6,661.5\;km^2$ dam watershed, the part of Han-river basin which has the watershed outlet at Chungju dam was selected. The SWAT model was calibrated and verified using 9 year and another 7 year daily dam inflow data. The Nash-Sutcliffe model efficiency ranged from 0.43 to 0.91. The Canadian Centre for Climate Modelling and Analysis (CCCma) Coupled Global Climate Model3 (CGCM3) data based on Intergovernmental Panel on Climate Change (IPCC) SRES (Special Report Emission Scenarios) B1 scenario was adopted for future climate condition and the data were downscaled by artificial neural network method. The future vegetation canopy condition was predicted by using nonlinear regression between monthly LAI (Leaf Area Index) of each land cover from MODIS satellite image and monthly mean temperature was accomplished. The future watershed mean temperatures of 2100 increased by $2.0^{\circ}C$, and the precipitation increased by 20.4 % based on 2001 data. The vegetation canopy prediction results showed that the 2100 year LAI of deciduous, evergreen and mixed on April increased 57.1 %, 15.5 %, and 62.5% respectively. The 2100 evapotranspiration, dam inflow, soil moisture content and groundwater recharge increased 10.2 %, 38.1 %, 16.6 %, and 118.9 % respectively. The consideration of future vegetation canopy affected up to 3.0%, 1.3%, 4.2%, and 3.6% respectively for each component.

Routing of Groundwater Component in Open Channel (Saint-Venant 공식(公式)에 의한 개수로(開水路)의 지하수성분(地下水性分) 추적(追跡))

  • Kim, Jae Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.4
    • /
    • pp.23-32
    • /
    • 1988
  • The rates of infiltration contributed to the flow fo water in an unconfined aquifer under the partially penetrated stream at an ungaged station and the corresponding base flow in channel are coupled by using the hydraulic and/or hydrologic characteristics obtained from the geomorphologic and soil maps. For the determination of groundwater flow, the linearized model which is originally Boussinesq's nonlinear equation is applied in this study. Also, a stream flow routing model for base flow in channel is based on a simplification of the Saint-venant. The distributed runoff model with piecewise spatial uniformity is presented for obtaining its solution based on a finite difference technique of the kinematic wave equations. The method developed in this study was tested to the Bocheong watershed(area : $475.5km^2$) of the natural stream basin which is one of tributaries in Geum River basin in Korea. As a result, it is suggested that the rationality of hydro-graph separation according to a wide variability in hydrogeologic properties be worked out as developing the physically based subsurface model. The results of the present model are shown to be possible to simulate a base flow due to an arbitrary rate of infiltration for ungaged basins.

  • PDF

Applicability of the Burr XII distribution through dimensionless L-moment ratio of rainfall data in South Korea (우리나라 강우자료의 무차원 L-moment ratio를 통한 Burr XII 분포의 수문학적 적용성 검토)

  • Seo, Jungho;Shin, Hongjoon;Ahn, Hyunjun;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.3
    • /
    • pp.211-221
    • /
    • 2017
  • In statistical hydrology, various extreme distributions such as the generalized extreme value (GEV), generalized logistic (GLO) and Gumbel (GUM) models have been widely used to analyze the extreme events. In the case of rainfall events in South Korea, the GEV and Gumbel distributions are known to be appropriate among various extreme distribution models. However, the proper probability distribution model may be different depending on the type of extreme events, rainfall duration, region, and statistical characteristics of extreme events. In this regard, it is necessary to apply a wide range of statistical properties that can be represented by the distribution model because it has two shape parameters. In this study, the statistical applicability of rainfall data is analyzed using the Burr XII distribution and the dimensionless L-moment ratio for 620 stations in South Korea. For this purpose, L-skewness and L-kurtosis of the Burr XII distribution are derived and L-moment ratio diagram is drawn and then the applicability of 620 stations was analyzed. As a result, it is found that the Burr XII distribution for the stations of the Han River basin in which L-skewness is relatively larger than L-kurtosis is appropriate, It is possibility of replacing the distribution of commonly used Gumbel or GEV distributions. Therefore, the Burr XII model can be replaced as an appropriate probability model in this basin.

Pollutant Load Characteristics from a Small Mountainous Agricultural Watershed in the North Han River Basin (북한강 중류 산간농업 소하천에서의 오염부하특성분석)

  • Shin, Yong-Chul;Choi, Joong-Dae;Lim, Kyoung-Jae;Shim, Hyeok-Ho;Lyou, Chang-Won;Yang, Jae E.;Yoo, Kyung-Yoal
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.6
    • /
    • pp.83-92
    • /
    • 2005
  • Natural environment of the Wolgokri stream watershed, located in Chuncheon, Gangwon province, Korea, has been well preserved as a traditional agricultural watershed. To analyze characteristics of NPS pollution generated from an mountainous agricultural watershed, the flow and water qualities of the study watershed were monitored and were analyzed to estimate pollution loads. Annual runoff volume ratio was $70.4\%$. Concentrations of T-N, T-p, COD, and TOC were higher when monthly rainfall was between $0\~30mm$ than those when monthly rainfall was between $30\~70mm$. However, the concentrations varied considerably when monthly rainfall was higher than 100mm. The flow weighted mean concentrations(mg/L) of BOD, COD, TOC, $NO_3-N$, T-N, T-P and SS were 1.96, 2.72, 3.32, 1.41, 4.70, 0.187 and 13.36, respectively. The BOD, SS, T-N and T-P loads of July, 2004 were $48\%,\;17\%,\;51\%\;and\;32\%$ of annual load, respectively. The BOD, COD, TOC, $NO_3-N$, T-N, T-p, and SS loads (kg/ha) from Mar. 2004 to Apr. 2005 were 19.09, 26.55, 32.39, 13.85, 45.92, 1.887 and 130.18, respectively. The highest concentrations of BOD, NO3-N, T-N, T-p, SS, COD and TOC were found before the flow reached the peak runoff, possibly due to the first flushing effect. Generally, pollution loads of the Wolgokri watershed were not that significant. Phosphorus load, however, was higher enough to cause eutrophication in the receiving water body It was recommended that best management practices need to be implemented to reduce phosphorus sources.

Flood inundation analysis resulting from two parallel reservoirs' failure (병렬로 위치한 2개 저수지 붕괴에 따른 홍수범람 해석)

  • Kim, Byunghyun;Han, Kun Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.2
    • /
    • pp.121-132
    • /
    • 2016
  • The DAMBRK is applied to Janghyeon and Dongmak reservoirs in Namdaecheon basin, where two reservoirs were failed due to Typhoon Rusa in 2002. Relaxation scheme is added to DAMBRK to consider the tributary cross-section because two reservoirs are in tributary valleys. In addition, this study suggests the method to utilize the reservoir breach formation time of ASDSO (2005) and empirical formulas for peak break outflow from dam to reduce the uncertainty of reservoir breach formulation time. The single break of Janghyeon reservoir and consecutive break of Janghyeon and Dongmak reservoirs with the suggested method are considered. While the breach discharge from reservoirs rushes down, the discharge and water surface elevation along the river are predicted, and the predictions show the attenuation phenomena of reservoir break floodwave. The applicability of the model is validated by comparing the predicted height with field surveyed data, and showing good agreements between predictions and measurements.

Improving SARIMA model for reliable meteorological drought forecasting

  • Jehanzaib, Muhammad;Shah, Sabab Ali;Son, Ho Jun;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.141-141
    • /
    • 2022
  • Drought is a global phenomenon that affects almost all landscapes and causes major damages. Due to non-linear nature of contributing factors, drought occurrence and its severity is characterized as stochastic in nature. Early warning of impending drought can aid in the development of drought mitigation strategies and measures. Thus, drought forecasting is crucial in the planning and management of water resource systems. The primary objective of this study is to make improvement is existing drought forecasting techniques. Therefore, we proposed an improved version of Seasonal Autoregressive Integrated Moving Average (SARIMA) model (MD-SARIMA) for reliable drought forecasting with three years lead time. In this study, we selected four watersheds of Han River basin in South Korea to validate the performance of MD-SARIMA model. The meteorological data from 8 rain gauge stations were collected for the period 1973-2016 and converted into watershed scale using Thiessen's polygon method. The Standardized Precipitation Index (SPI) was employed to represent the meteorological drought at seasonal (3-month) time scale. The performance of MD-SARIMA model was compared with existing models such as Seasonal Naive Bayes (SNB) model, Exponential Smoothing (ES) model, Trigonometric seasonality, Box-Cox transformation, ARMA errors, Trend and Seasonal components (TBATS) model, and SARIMA model. The results showed that all the models were able to forecast drought, but the performance of MD-SARIMA was robust then other statistical models with Wilmott Index (WI) = 0.86, Mean Absolute Error (MAE) = 0.66, and Root mean square error (RMSE) = 0.80 for 36 months lead time forecast. The outcomes of this study indicated that the MD-SARIMA model can be utilized for drought forecasting.

  • PDF

Factors Affecting Chemical Disinfection of Drinking Water

  • Lee, Yoon-jin;Nam, Sang-ho;Jun, Byong-ho;Oh, Kyoung-doo;Kim, Suk-bong;Ryu, Jae-keun;Dionysiou, Dionysios D.;Itoh, Sadahiko
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.2
    • /
    • pp.126-131
    • /
    • 2004
  • This research sought to compare chlorine, chlorine dioxide and ozone as chemical disinfectants of drinking water, with inactivation of total coliform as the indicator. The inactivation of total coliform was tested against several variables, including the dose of disinfectant, contact time, pH, temperature and DOC. A series of batch processes were performed on water samples taken from the outlet of a settling basin in a conventional surface water treatment system that is provided with the raw water drawn from the mid-stream of the Han River. Injection of 1 mg/L of chlorine, chlorine dioxide and ozone resulted in nearly 2.4, 3.0 and 3.9 log inactivation, respectively, of total coliform at 5 min. To achieve 99.9 % the inactivation, the disinfectants were required in concentrations of 1.70, 1.00 and 0.60 mg/L for chlorine, chlorine dioxide and ozone, respectively. Bactericidal effects generally decreased as pH increased in the range of pH 6 to 9. The influence of pH change on the killing effect of chlorine dioxide was not strong, but that on ozone and free chlorine was sensitive. The activation energies of chlorine, chlorine dioxide and ozone were 36,053, 29,822 and 24,906 J/mol for coliforms with inactivation effects being shown in the lowest orders of these.