Browse > Article
http://dx.doi.org/10.15681/KSWE.2019.35.3.234

Projection of water temperature and stratification strength with climate change in Soyanggang Reservoir in South Korea  

Yun, Yeojeong (Department of Environmental Engineering, Chungbuk National University)
Park, Hyungseok (Department of Environmental Engineering, Chungbuk National University)
Chung, Sewoong (Department of Environmental Engineering, Chungbuk National University)
Publication Information
Abstract
In a deep lake and reservoir, thermal stratification is of great importance for characteristics of hydrodynamic mixing of the waterbody, and thereby influencesvertical distribution of dissolved oxygen, substances, nutrients, and the phytoplankton community. The purpose of this study, was to project the effect of a future climate change scenario on water temperature, stratification strength, and thermal stability in the Soyanggang Reservoir in the Han River basin of South Korea, using a suite of mathematical models; SWAT, HEC-ResSim, and CE-QUAL-W2(W2). W2 was calibrated with historical data observed 2005-2015. Using climate data generated by HadGEM2-AO with the RCP 4.5 scenario, SWAT predicted daily reservoir inflow 2016-2070, and HEC-ResSim simulated changes in reservoir discharge and water level, based on inflow and reservoir operation rules. Then, W2 was applied, to predict long-term continuous changes of water temperature, in the reservoir. As a result, the upper layer (5 m below water surface) and lower layer (5 m above bottom) water temperatures, were projected to rise $0.0191^{\circ}C/year$(p<0.05) and $0.008^{\circ}C/year$(p<0.05), respectively, in response to projected atmospheric temperature rise rate of $0.0279^{\circ}C/year$(p<0.05). Additionally, with increase of future temperature, stratification strength of the reservoir is projected to be stronger, and the number of the days when temperature difference of the upper layer and the lower layer becomes greater than $5^{\circ}C$, also increase. Increase of water temperature on the surface of the reservoir, affected seasonal growth rate of the algae community. In particular, the growth rate of cyanobacteria increased in spring, and early summer.
Keywords
Climate change; Soyanggang Reservoir; Stratification strength; Thermal stability; Water temperature;
Citations & Related Records
Times Cited By KSCI : 10  (Citation Analysis)
연도 인용수 순위
1 Chung, S. W., Park, H. S., Yoon, S. W., and Ryu, I. G. (2011). Effect of installing a selective withdrawal structure for the control of turbid water in Soyang reservoir, Journal of Korean Society on Water Environment, 27(6), 743-753. [Korean Literature]
2 Choi, J., Ahn, J., Kim, K. S., and Lim, K. J. (2007). Evaluation of SWAT Applicability to simulation of sediment behaviors at the Imha-Dam watershed, Journal of Korean Society on Water Environment, 23(4), 467-473. [Korean Literature]
3 Cole, T. M., and Wells, S. A. (2017). CE-QUAL-W2: A two-dimensional, laterally averaged, hydrodynamic and water quality model, version 4.1, Department of Civil and Environmental Engineering Portland State Univeristy.
4 Debele, B., Srinivasan, R., and Parlange, J. Y. (2008). Coupling upland watershed and downstream waterbody hydrodynamic and water quality models (SWAT and CE-QUAL-W2) for better water resources management in complex river basins, Environmental Modeling & Assessment, 13(1), 135-153.   DOI
5 Edwards, K. F., Thomas, M. K., Klausmeier, C. A., and Litchman, E. (2016). Phytoplankton growth and the interaction of light and temperature: A synthesis at the species and community level, Limnology and Oceanography, 61(4), 1232-1244.   DOI
6 Fang, X. and Stefan, H. G. (2009). Simulations of climate effects on water temperature, dissolved oxygen, and ice and snow covers in lakes of the contiguous US under past and future climate scenarios, Limnology and Oceanography, 54(6part2), 2359-2370.   DOI
7 Han, J. H., Lee, D. J., Kang, B. S., Chung, S. W., Jang, W. S., Lim, K. J., and Kim, J. G. (2017). Potential Impacts of Future Extreme Storm Events on Streamflow and Sediment in Soyangdam Watershed, Journal of Korean Society on Water Environment, 33(2), 160-169. [Korean Literature]   DOI
8 Intergovernmental Panel on Climate Change (IPCC). (2007). Climate change 2007: The physical science basis. Agenda, 6(07), 333.
9 Intergovernmental Panel on Climate Change (IPCC). (2014). Mitigation of climate change, Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1454.
10 Jung, I. W., Bae, D. H., and Kim, G. (2011). Recent trends of mean and extreme precipitation in Korea, International journal of climatology, 31(3), 359-370. [Korean Literature]   DOI
11 Joung, S. H., Park, H. K., Lee, H. J. and Lee, S. H., (2013). Effect of climate change for diatom bloom at winter and spring season in Mulgeum station of the Nakdong river, South Korea, Journal of Korean Society on Water Environment, 29(2), 155-164. [Korean Literature]
12 Kang, B. and Moon, S. (2017). Regional hydro climatic projection using an coupled composite downscaling model with statistical bias corrector, KSCE Journal of Civil Engineering, 21(7), 2991-3002.   DOI
13 Kim, B. C. and Kim, Y. H. (2004). Articles : phosphorus cycle in a deep reservoir in Asian Monsoon Area(Lake Soyang, Korea) and the modeling with a 2-D hydrodynamic water quality model [CE-QUAL-W2], Korean Journal of Limnology, 37(2), 205-212. [Korean Literature]
14 Kim, B. S., Kwon, H. H., and Kim, H. S. (2011). Impact assessment of climate change on drought risk, Journal of Wetlands Researh, 1, 9. [Korean Literature]
15 Kim, Y. H., Kim, B. C., Choi, K. S., and Seo, D. I. (2001). Modeling of Thermal Stratification and Transport of Density Flow in Soyang Reservoir Using the 2-D Hydrodynamic Water Quality Model, CE-QUAL-W2, Journal of the Korean Society of Water and Wastewater, 18, 96-105. [Korean Literature]
16 K-water. (2007). Multipurpose dam (four dams including Soyanggang Dam) Establishment of turbid water reduction plan (Soyanggang Dam). [Korean Literature]
17 Kosten, S., Roland, F., Da Motta Marques, D. M., Van Nes, E. H., Mazzeo, N., Sternberg, L. D. S., Scheffer, M., and Cole, J. J. (2010). Climate dependent $CO_2$ emissions from lakes, Global Biogeochemical Cycles, 24(2).
18 Kundzewicz, Z. W., Kanae, S., Seneviratne, S. I., Handmer, J., Nicholls, N., Peduzzi, P., Mechler, R., Bouwer, L. M., Arnell, N., Mach, K., Muir-Wood, R. Brakenridge, G. R., Kron, W., Benito, G., Honda, Y., Takahashi, K., and Sherstyukov, B. (2014). Flood risk and climate change: global and regional perspectives, Hydrological Sciences Journal, 59(1), 1-28.   DOI
19 K-water. (1994). Research report on the reservoir of Soyang river dam. [Korean Literature]
20 Lee, K. H. (2016). Prediction of climate-induced water temperature using nonlinear air-water temperature relationship for aquatic environments, Journal of Environmental Science International, 25(6), 877-888. [Korean Literature]   DOI
21 Lee, J. W., Eom, J. S., Kim, B. C., Jang, W. S., Ryu, J. C., Kang, H. W., Kim, K. S.. and Lim, K. J. (2011). Water quality prediction at mandae watershed using SWAT and water quality improvement with Vegetated Filter Strip. Journal of the Korean Society of Agricultural Engineers, 53(1), 37-45. [Korean Literature]   DOI
22 Martin, J. L., McCutcheon, S. C., and Schottman, R. W. (1999). Dynamic modeling of estuaries, In Hydrodynamics and Transport for Water Quality Modeling, CRC Press, 521-770.
23 Neitsch, S. L., Arnold, J. G., Kiniry, J. R., and Williams, J. R. (2009). Soil and water assessment tool theoretical documentation version 2009, Texas Water Resources Institute.
24 Paerl, H. W. and Otten, T. G. (2013). Harmful cyanobacterial blooms: causes, consequences, and controls, Microbial ecology, 65(4), 995-1010.   DOI
25 Noh, S., Park, H., Choi, H., and Lee, J. (2014). Effect of Climate Change for cyanobacteria growth pattern in chudong station of lake Daechung, Journal of Korean Society on Water Environment, 30(4), 377-385. [Korean Literature]   DOI
26 Paerl, H. W., Hall, N. S., and Calandrino, E. S. (2011). Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change, Science of the Total Environment, 409(10), 1739-1745.   DOI
27 Paerl, H. W. and Huisman, J. (2009). Climate change: a catalyst for global expansion of harmful cyanobacterial blooms, Environmental microbiology reports, 1(1), 27-37.   DOI
28 Paerl, H. W. and Paul, V. J. (2012). Climate change: links to global expansion of harmful cyanobacteria, Water research, 46(5), 1349-1363.   DOI
29 Park, H. and Chung, S. (2018). $pCO_2$ Dynamics of Stratified Reservoir in Temperate Zone and $CO_2$ Pulse Emissions During Turnover Events, Water, 10(10), 1347.   DOI
30 Park, H., Chung, S., Cho, E., and Lim, K. (2018). Impact of climate change on the persistent turbidity issue of a large dam reservoir in the temperate monsoon region, Climatic Change, 151(3-4), 365-378. [Korean Literature]   DOI
31 Park, J., Jang, Y., and Seo, D. (2017). Water quality prediction of inflow of the Yongdam Dam basin and its reservoir using SWAT and CE-QUAL-W2 models in series to climate change scenarios, Journal of Korea Water Resources Association, 50(10), 703-714.   DOI
32 Wagner, C., and Adrian, R. (2009). Cyanobacteria dominance: quantifying the effects of climate change, Limnology and Oceanography, 54(6part2), 2460-2468.   DOI
33 Sahoo, G. B., Schladow, S. G., Reuter, J. E., and Coats, R. (2011). Effects of climate change on thermal properties of lakes and reservoirs, and possible implications, Stochastic Environmental Research and Risk Assessment, 25(4), 445-456.   DOI
34 Sheffield, J., and Wood, E. F. (2008). Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations, Climate dynamics, 31(1), 79-105.   DOI
35 Trenberth, K. E., Dai, A., Van Der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R., and Sheffield, J. (2013). Global warming and changes in drought, Nature Climate Change, 4(1), 17.   DOI
36 Wetzel, R. G. (2001). Limnology: lake and river ecosystems, gulf professional publishing.
37 Winslow, L., Read, J., Woolway, R., Brentrup, J., Leach, T., Zwart, J., Albert, S., and Collinge, D. (2018). Package 'rLakeAnalyzer'.
38 Yi, H. S., Kim, D. S., Hwang, M. H., and An, K. G. (2016). Assessment of runoff and water temperature variations under RCP climate change scenario in Yongdam dam watershed, South Korea, Journal of Korean Society on Water Environment, 32(2), 173-182. [Korean Literature]   DOI
39 Yu, J. J., Lee, H. J., Lee, K. L., Lyu, H. S., Whang, J. H., Shin, L. Y., and Chen, S. U. (2014). Relationship between Distribution of the Dominant Phytoplankton Species and Water Temperature in the Nakdong River, Korea, The Korean Society Of Limnology, 47(4). 247-257. [Korean Literature]
40 Ye, L., Yoon, S. W., and Chung, S. W. (2008). Application of SWAT for the estimation of soil loss in the Daecheong Dam Basin, Journal of Korea Water Resources Association, 41(2), 149-162. [Korean Literature]   DOI
41 Bronstert, A. (2003). Floods and climate change: interactions and impacts, Risk Analysis: An International Journal, 23(3), 545-557.   DOI
42 Ahn, S. R., Kim, S. H., Yoon, S. W., and Kim, S. J. (2014). Evaluation of future turbidity water and eutrophication in Chungju lake by climate change using CE-QUAL-W2, Journal of Korea Water Resources Association, 47(2), 145-159.   DOI
43 Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., Santhi, C., Harmel, R. D., Griensven, A. V., Liew, M. W. V., Kannan, N., and Jha, M. K. (2012). SWAT: Model use, calibration, and validation, Transactions of the ASABE, 55(4), 1491-1508.   DOI
44 Bae, D. H., Jung, I. W., and Kwon, W. T. (2007). Generation of high scenarios for climate impacts on water resources (I): climate scenarios on each sub-basins, Journal of Korea Water Resources Association. 40(3), 191-204. [Korean Literature]   DOI
45 Borsuk, M., Clemen, R., Maguire, L., and Reckhow, K. (2001). Stakeholder values and scientific modeling in the Neuse River watershed, Group Decision and Negotiation, 10(4), 355-373.   DOI
46 Bowen, J. D. and Hieronymus, J. W. (2003). A CE-QUAL-W2 model of Neuse Estuary for total maximum daily load development, Journal of Water Resources Planning and Management, 129(4), 283-294.   DOI
47 Butcher, J. B., Nover, D., Johnson, T. E., and Clark, C. M. (2015). Sensitivity of lake thermal and mixing dynamics to climate change, Climatic Change, 129(1-2), 295-305.   DOI
48 Chapra, S. C., Boehlert, B., Fant, C., Bierman Jr, V. J., Henderson, J., Mills, D., Mas, D. M. L., Rennels, L., Jantarasami, L., Martinich, J., Strzepek, K. M., and Paerl, H. W. (2017). Climate change impacts on harmful algal blooms in US freshwaters: a screening-level assessment, Environmental Science & Technology, 51(16), 8933-8943.   DOI
49 Chung, S. W. and Park, H. S. (2017). Introduction of turbid water reduction and management technology development for extreme events, Korea Water Resource Association, 50(6), 50-57.