• Title/Summary/Keyword: The Electric Substations

Search Result 109, Processing Time 0.024 seconds

Investigation of Applyed Limit on IEEE Std-2000 for Mesh Voltage Equations (IEEE Std-2000의 메쉬전압식 적용한계의 검토)

  • Moon, Tae-Hwan;Lee, Min-Myung;Jung, Gil-Jo;Yun, Jang-Wan
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.368-370
    • /
    • 2001
  • There are various shapes such as square, rectangular, L, and T type in the grounding systems of substations. IEEE St-d suggests the formula considering the characteristics of the various grounding systems but the final value can not be taken, and them the analysis of complicated computer program for obtaining the more accurate value is needed. In his paper, by using CDEGS(Current, Distribution, Electromagnetic and Soil Structure Analysis) the estimated functions derives form the modification coefficient for each of various types above mentioned. The mesh voltage expected can be obtained without the conventional expensive program using compensating methods that multiply IEEE formula by the estimated function.

  • PDF

Feasibility Study of FACTS Application for Available Transfer Capability Enhancement in Korean Power System (우리나라계통의 북상조류 증대를 위한 FACTS 적용방안 연구)

  • Chang, Byung-Hoon;Moon, Seung-Pil;Yoon, Jong-Su;Kim, Soo-Yeol;Baek, Doo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.63-65
    • /
    • 2005
  • Korea Electric Power Corporation (KEPCO) is in charge of the operation and the maintenance for transmission lines and substations in Korean power system which is under the deregulation power market. KEPCO has a main constrain of transmission line toward SEOUL area which is a capital of KOREA because SEOIJL is a huge load of Korean power system. The Korea Electric Power Research Institute (KEPRI)), a division of KEPCO was tasked to study the ATC enhancement of transmission line toward SEOUL using a new line or/and FACTS. This paper summarizes the results of those studies, enhancing the ATC and evaluating the economics.

  • PDF

Development of Accurate Load Model for Detailed Power System Stability Analysis (전력계통 안정도 정밀해석을 위한 적정 부하모델 개발)

  • Park, S.W.;Kim, K.D.
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.201-205
    • /
    • 2001
  • This paper presents the load modeling process and bus load models for KEPCO power system. At first, load devices commonly used in KEPCO power systems were selected, and tested for measuring the voltage and frequency sensitivity of active and reactive power. From this test, about 40 voltage and frequency dependent load models have been obtained. The bus load composition rate for KEPCO power system has been determined using the various recent surveys and papers in order to develop the load model for a power system bus. To verify the accuracy of developed bus load models, the field test for measuring active and reactive power according to artificial variation of the bus voltage was performed at 8 substations for spring summer, autumn, winter cases. With data of this seasonal field test, more reliable bus load models for KEPCO power systems were developed.

  • PDF

A Survey on the Harmonic Voltage in the Distribution Systems (배전계통에서의 고조파 전압 왜형율의 실태 조사)

  • Seo, J.C.;Kang, Y.C.;Kim, S.S.;Nam, S.R.;Park, J.K.;Myoung, S.H.;Kang, Y.S.;Choi, H.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.146-148
    • /
    • 1996
  • This paper reports the measurement results of the harmonic voltage in the distribution systems. These results were obtained from the harmonic voltage survey carried out at six industrial customers, three department stores, two apartment buildings, six substations for subway, etc. The properties in each place are analyzed.

  • PDF

Experimental Study on the Dynamic Characteristics of Porcelain Surge Arrestor Considering the Variation of Cable's Tension and Arrestor's Stiffness (케이블 장력 및 피뢰기의 강성 변화를 고려한 애자형 피뢰기의 동특성 시험 연구)

  • Jang, Jung Bum;Hwang, Kyeong Min;Yun, Kwan Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.253-259
    • /
    • 2014
  • Porcelain surge arrestor is very vulnerable to earthquake but there is very few information on its dynamic characteristics which are necessary to the seismic design. Therefore, the dynamic characteristics of the porcelain surge arrestor are evaluated considering the variation of its cable tension and stiffness by shaking table test. The test results show that the first natural frequencies are 5.3 Hz and 5.2 Hz in the horizontal x- and y-axis directions, respectively, and higher than 30 Hz in the vertical z-axis direction, respectively. The installation of cable on the surge arrestor reduces the horizontal natural frequencies due to the constraint effect of the cable but cable tension has no effect on the natural frequency. Also, the natural frequency is proportional to the stiffness of the surge arrestor. This test result will be used for the seismic design and seismic capacity assessment of domestic substations and contribute to the stability of the electric power supply under earthquake event.

A Study for Fault Location Scheme Using the 9-Conductor Modeling of Korean Electric Railway System (9도체 전기철도 모델링을 이용한 고장점 표정 방안 연구)

  • Lee, Han-Sang;Lee, Chang-Mu;Lee, Han-Min;Jang, Gil-Soo;Chang, Sang-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.411-413
    • /
    • 2006
  • This paper presents a novel fault location scheme on Korean AC electric railway systems. On AC railway system, because there is a long distance, 40 km or longer, between two railway substations, a fault location technique is very important. Since the fault current flows through the catenary system, the catenary system must be modeled exactly to analyze fault current magnitude and fault location. In this paper, before suggestion for the novel scheme of fault location, a 9-conductor modeling technique that includes boost wires and impedance bonds is introduced, based on the characteristics of Korean AC electric railway. After obtaining a 9-conductor modeling, the railway system is constructed for computer simulation by using PSCAD/EMTDC. By case studies, we can verify superiority of a new fault location scheme and suggest a powerful model for fault analysis on electric railway systems.

  • PDF

A Method for Evaluating Electric Shock Hazards Based on Human Body Current (인체전류를 기반으로 하는 감전의 위험성 평가방법)

  • Lee, Bok-Hee;Yoo, Yang-Woo;Choi, Jong-Hyuk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.108-114
    • /
    • 2011
  • In order to mitigate the possible hazards from electric shock due to the touch and step voltages, the high resistivity material such as gravel is often spread on the earth's surface in substations. When the grounding electrode is installed in two-layer soil structures, the surface layer soil resistivity is different with the resistivity of the soil contacted with the grounding electrodes. The design of large-sized grounding systems is fundamentally based on assuring safety from dangerous voltages within a grounding grid area. The performance of the grounding system is evaluated by tolerable touch and step voltages. Since the floor surface conditions near equipment to be grounded are changed after a grounding system has been constructed, it may be difficult to determine the tolerable touch and step voltage criteria. In this paper, to propose an accurate and convenient method for evaluating the protective performance of grounding systems, the propriety of the method for evaluating the current flowing through the human body around on a counterpoise buried in two-layer soils is presented. As a result, it is reasonable that the grounding system performance would be evaluated by measuring and analyzing the current flowing through the human body based on dangerous voltages such as the touch or step voltages and the contact resistance between the ground surface and feet.

The Experimental Study on Seismic Capacity of 154 kV & 345 kV Main Transformer Bushings (154 kV 및 345 kV 주변압기 부싱의 내진성능 시험 연구)

  • Hwang, Kyeong Min;Ham, Kyung Won;Kim, Gyeong Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.87-94
    • /
    • 2018
  • In this study, seismic performance of bushings and their connection parts was analyzed by performing shaking table tests for various types of bushings widely used as auxiliary equipment of main transformers in domestic substations. As a result of the seismic tests of five types of 154 kV bushings according to the manufacturers, all the bushings secured the structural integrity even at the acceleration of 1.4 g and it was found that leakage of insulating oil didn't occur. Also, the average acceleration amplification rate at the upper part of the bushings was about 2.5 to 3.0 times higher than the lower one. On the other hand, when a representative 345 kV bushing was subjected to the seismic test, the structural integrity was secured even at 1.0 g acceleration similar to the design earthquake load level, but in this test, leakage of insulating oil occurred. However, when a stiffener restricting the connection of the bushing is installed in the same 345 kV bushing, the displacement of the bushing connection is controlled and the stiffener prevent the oil from leaking even at the acceleration of the designed seismic level.

A Simulation Modeling for Rail Potential and Leakage Current Analysis in DC Traction System (직류 전기철도에서의 레일전위 및 누설전류 해석을 위한 시뮬레이션 모델링)

  • Yoon, Yim-Joong;Lee, Jong-Woo
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.196-201
    • /
    • 2008
  • In DC traction systems, a part of feedback current returning through rails becomes leakage current, illumination on a metal laid underground results from the leakage current to ground. To prevent the leakage current on rails, feedback rails almost have insulated with the ground. Insulation between rails and the ground causes that the earth method changes a isolated method in DC traction systems. the rail potential rise results in the isolated method. the rail potential rise causes an electric shock when a person touches the ground and rolling stock. To decrease the rail potential rise and leakage current, there are methods for reducing the feedback resistance and current of rails, increasing the leakage resistance, decreasing the distance between substations. But it are necessary to forecast and analyze the rail potential and amplitude of leakage current. In this paper, we modeled DC traction systems and feedback circuit to simulate the rail potential and amplitude of leakage current using PSCAD/EMTDC that is power analysis program, forecasted the rail potential and amplitude of leakage current about changing various parameters in the electric circuit. By using the simulation model, we easily will forecast the rail potential and amplitude of leakage current in case of a level of basic design and maintenance in electric railway systems, valuably use basic data in case of system selection.

  • PDF

Measurements of the Ground Resistance using the Test Current Transition Method in Powered Grounding Systems (측정전류전이법을 이용한 운전중인 접지시스템의 접지저항 측정)

  • Lee, Bok-Hui;Eom, Ju-Hong;Kim, Seong-Won
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.8
    • /
    • pp.347-353
    • /
    • 2002
  • This paper presents an accurate method for measuring the ground resistance in powered grounding system. Most of substations and electric power equipments are interconnected to an extensive grounding network of overhead ground wires, neutral conductors of transmission lines, cable shields, and etc. The parasitic effects due to circulating ground currents and ground potential rise make a significant error in measuring the ground resistance. The test current transition method was proposed to reduce the effects of stray ground currents, ground potential rise and harmonic components in measurements of the ground resistance for powered grounding systems. The instrumental error of the test current transition method is decreased as the ratio of the test current signal to noise(S/N) increases. It was found from the test results that the proposed measuring method of the ground resistance is more accurate than the conventional fall-of-potential method or low-pass filter method, and the measuring error was less than 3[%]when S/N is 10.