• Title/Summary/Keyword: Thawing Temperature

Search Result 306, Processing Time 0.025 seconds

Storage potential of low temperature adapted shiitake mushroom under freezing temperature (저온성 표고버섯의 빙점하 저장 잠재력)

  • Hwang, Yong Soo;Seo, Geon Sik
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.3
    • /
    • pp.197-202
    • /
    • 2013
  • This study was aimed to find the storage potential of low temperature adapted shiitake mushroom under freezing temperature ($-3^{\circ}C$). Fresh shiitake mushroom was harvested at late Feb. and cooled to target temperature, $-3^{\circ}C$ in the cooling room for 24 hr. Cooled mushroom were then placed in plastic boxes, wrapped with plastic film ($30{\mu}m$), and stored at $-3^{\circ}C$ for 2 months. Weight loss of mushroom was ranged from 2.1 to 3.2%. Dry weight per unit fresh weight, however, was slightly increased because of moisture loss. Firmness of fruit body increased from $0.95kg/cm^{-2}$ (before storage) to $1.13kg/cm^{-2}$ (after 2 month storage). About half amount of starch was lost during 2 month storage. The amount of total and reducing sugars remained relatively constant. After storage, freshness of mushroom was recovered by thawing treatment. When recovered mushroom were packaged with styrofoam tray and PVC wrapping, and exposed to ambient and $10^{\circ}C$, respectively, brown spot on the gill of fruit body was found and slight decay symptom was also found at ambient temperature only but not at $10^{\circ}C$. Results indicated that low temperature adapted shiitake mushroom has a storage potential under freezing temperature ($-3^{\circ}C$). Freezing storage technology of fresh shiitake mushroom will contribute the increase of storability up to 2 months.

Effects of Freezing Temperature on Quality of Mulberry (냉동 온도가 오디 품질에 미치는 영향)

  • Kim, Jung-Eun;Jo, Hye-Jin;Yu, Min-Ji;Song, Kyung Bin;Kim, Ha-Yun;Park, Jong-Tae
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.267-271
    • /
    • 2015
  • This study aimed to determine the optimal freezing temperature for preserving mulberries. Mulberries were frozen at -20, -45, and $-70^{\circ}C$ immediately after harvesting. After 24 h, frozen mulberries were stored at $-20^{\circ}C$ for two months and then thawed at $4^{\circ}C$ and room temperature. Frozen and thawed mulberries did not differ significantly in color and pH from fresh mulberries. However, the content of anthocyanidin and sugar, and the hardness of mulberry significantly decreased after feeze-thawing. Drip loss of the thawed berries increased as the freezing temperature decreased. A comparison among cross-section images of mulberries frozen at different temperatures did not show any significant differences. However, after thawing at $4^{\circ}C$ or room temperature, the total number of aerobic bacteria found in mulberry decreased more than ten times. Consequently, the freezing temperature showed no significant effect on the overall quality of the mulberry.

Delayed Deproteinization Causes Methodological Errors in Amino Acid Levels in Plasma Stored at Room Temperature or -20℃

  • Li, Junyou;Piao, Chunxiang;Jin, Huazi;Wongpanit, Kannika;Manabe, Noboru
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.12
    • /
    • pp.1703-1708
    • /
    • 2009
  • Deproteinization has been recognized as a prerequisite for amino acid analysis of plasma samples. For plasma stored at room temperature, delaying deproteinization for 30, 60 or 120 minutes did not result in significant changes in the mean CV (coefficient of variation), which ranged from 4.4 to 5.6%. However the mean CV of aspartic acid, ${\alpha}$-aminoadipic acid, alanine and lysine was about 10%. When the plasma was stored frozen at -20${^{\circ}C}$, the CV was increased at 0 and 120 minutes after thawing, to 12.4% (range, 4.1 to 35.3%) and 8.0% (2.5 to 30.7%), respectively. The concentrations in plasma during storage at room temperature of all the amino acids analyzed showed significant changes. In plasma stored for 30 minutes at room temperature, 17 amino acids increased in concentrations and two decreased. Extending this period to 60 or 120 minutes increased the instability as compare to the reference group. Storing plasma at -20${^{\circ}C}$ for 2 weeks resulted in significantly greater changes in the amino acid concentrations than at room temperature. On extending the storage time at room temperature, after thawing, to 30, 60, and 120 minutes, 21, 20, and all 22 amino acids respectively changed significantly (p<0.01). The present study indicates that methodological errors occur in the concentrations determined for all amino acids when plasma is left at room temperature. The storage of frozen non-deproteinized plasma accompanied more significant changes in most amino acid concentrations and thus should be avoided. Deproteinization should be performed as soon as possible after plasma collection.

A Time-temperature Indicator for A Vision Based-Detection System for Managing the Storage Temperature of Frozen Fish Products (냉동 수산물의 저장 온도 관리를 위한 Time-temperature Indicator와 비전 기반 Indicator 분석 프로그램 개발)

  • Jang, Myung-Kee;Hong, Chang-Wook;Choi, Jae-Hyuk;Kim, Koth-Bong-Woo-Ri;Choi, Jeong-Wook;Nam, Taek-Jeong;Ahn, Dong-Hyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.1
    • /
    • pp.91-94
    • /
    • 2018
  • We develop a time-temperature indicator (TTI) that can determine whether thawing of fish and other fishery products has occurred during frozen storage. A polypropylene tube with an internal diameter of 3 mm was prepared and cut to a length of 14 to 20 mm. One end of the tube was thermally sealed and 0.1% acetic acid was injected into the other end; the tube was then frozen at $20^{\circ}C$. Then the open side of the frozen tube was blocked by sinking the tube into a 10% gelatin solution. The tube was attached to a polyvinyl packaging bag along blue litmus paper and the bag was put into a freezer at $-20^{\circ}C$. After freezing, the bag was removed to an ambient temperature of $20^{\circ}C$, and the time dependence of the color change of the litmus paper was observed. The color changed from blue to red, with the length of the red region increasing with time. Our TTI can be used as a part of a visible detection system and the detection program can conduct the elapsed time analysis on the length of the red region of the litmus paper indicating the degree of thawing. Thus, the TTI is a useful tool in the temperature management of frozen fish and fishery products.

Soil quality Assessment for Environmentally Sound Agriculture in the Mountainous Soils - Installation of Monitoring System and Background Data Collection - (산지에서의 환경보전형 농업을 위한 토양의 질 평가 -모니터링 시스템의 구축과 기초자료의 수집-)

  • 최중대;김정제;정진철
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.2
    • /
    • pp.113-123
    • /
    • 1997
  • This study was initiated to build runoff plots, install soil and water quality monitoring systems and collect background data from the plots and neighboring soils as the 1st year study of a 5 year project to assess soil quality and develop the management practices for environmentally sound agriculture in mountainous soils. Eleven $3{\times}15m$ runoff plots and monitoring systems were installed at a field of National Alpine Agricultural Experiment Station to monitor soil quality and discharge of nonpoint source pollutants. Corn and potato were cultivated under different fertilizer, tillage and residue cover treatments. The soil has a single-layered cluster structure that has a relatively good hydrologic properties and can adsorb a large amount of nutrient. Concentrations of T-N, $NH_4$-N, and $NO_3$-N of surface soil sampled in the winter were relatively high. Runoff quality in the winter and thawing season in the spring was largely dependent on surface freezing, snow accumulation, temperature, surface thawing depth and so on. Runoff during the thawing season caused serious soil erosion but runoff quality during the winter was relatively good. Serious wind erosion from unprotected fields after the fall harvest were obserbed and best management practices to reduce the erosion need to be developed.

  • PDF

Investigation of Meat Quality Characteristics using by Spectroscopic Methods in Visible Region (NIR을 이용하여 시간 변화에 따른 소 등심육의 부위별 특성 조사)

  • Maeng, Gab-Joo;Hwang, Dae-Seok;Lee, Young-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.268-270
    • /
    • 2007
  • We investigated characteristics of meat quality using by spectroscopic methods in visible region. Characteristics of beef muscle quality was measured by using spectrum analysis. We take the 3 samples of meat, and each sample has 3 measuring point. Also each measured samples has alternate thawing time(the state of frozen meat, thawing 20 minute and thawing 40 minute in the room temperature). As a results of experiments, measured intensity has changed by distributions of Myoglobin in meat muscles. And we can distinction the and characteristics of meat quality by distributions of lean meat and fat.

  • PDF

A Study on the Engineering Characteristics of PVA (Polyvinyl Alcohol) Fiber-Cement-Soil Mixtures (PVA 시멘트 혼합토의 공학적 특성 연구)

  • Kim, Young-Ik;Yeon, Kyu-Seok;Kim, Ki-Sung;Yoo, Kyeong-Wan;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.2
    • /
    • pp.35-43
    • /
    • 2011
  • This study aimed to investigate the engineering characteristics of PVA fiber-cement-soil mixture used to prevent or reduce brittle failure of cement-soil mixtures due to the tensile strength increase from the addition of a synthetic fiber. The engineering characteristics of PVA fiber-cement-soil mixtures composed of PVA fiber, soil, and a small amount of cement was analysed on the basis of the compaction test, the unconfined compression test, the tensile strength test, the freezing and thawing test, and the wetting and drying test. The specimens were manufactured with soil, cement and PVA fiber. The cement contents was 2, 4, 6, 8, and 10%, and the fiber contents was 0.4, 0.6, 0.8, and 1.0% by the weight of total dry soil. To investigate the strength characteristics depending on age, each specimen was manufactured after curing at constant temperature and humidity room for 3, 7 and 28 days, after which the engineering characteristics of PVA fiber-cement-soil mixtures were investigated using the unconfined compression test, the tensile strength test, the freezing and thawing test, and the wetting and drying test. The basic data were presented for the application of PVA fiber-cement-soil mixtures as construction materials.

Effect of Freezing Temperature on Blueberry Quality (냉동 온도에 따른 블루베리의 품질 특성 비교)

  • Jo, Hye-Jin;Kim, Jung-Eun;Yu, Min-Ji;Lee, Wang-Hee;Song, Kyung Bin;Kim, Ha-Yun;Hwang, In Guk;Yoo, Seon Mi;Han, Gwi Jung;Park, Jong-Tae
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.12
    • /
    • pp.1906-1912
    • /
    • 2014
  • To evaluate the effect of freezing temperature on quality of blueberries, blueberry fruit was frozen at -20, -45, and $-70^{\circ}C$ immediately after harvest. After 24 hr of freezing, frozen blueberries were stored at $-20^{\circ}C$ for 2 months. Blueberries were thawed at $4^{\circ}C$ or $25^{\circ}C$ and subjected to subsequent analyses of drip ratio, fruit hardness, pH of juice, color, and sugar content. Frozen berries at all three temperatures did not show any significant difference in pH or sugar content compared with fresh berries. The drip ratio of berries decreased as the freezing temperature decreased. Thawing conditions significantly affected the drip ratio of berries frozen at $-20^{\circ}C$. Hardness of berries was significantly reduced after freeze-thawing. Freezing and thawing reduced total aerobic bacteria and yeast/mold numbers by more than 2 log regardless of freezing or thawing temperature ($4^{\circ}C$ or $25^{\circ}C$). Cross-section of blueberries did not show different shapes by freezing temperature. Further studies such as sensory evaluation are needed to determine the optimum freezing temperature regarding quality and cost.

Physicochemical Properties of Pork Neck and Chicken Leg Meat under Various Freezing Temperatures in a Deep Freezer

  • Kim, Eun Jeong;Lee, SangYoon;Park, Dong Hyeon;Kim, Honggyun;Choi, Mi-Jung
    • Food Science of Animal Resources
    • /
    • v.40 no.3
    • /
    • pp.444-460
    • /
    • 2020
  • This study was conducted to investigate the effects of freezing and storage temperature (-18℃, -50℃, and -60℃) on the physicochemical properties of pork neck and chicken leg meat in home-scale deep freezers. Pork neck was cut into a thickness of 3 cm (9×9×3 cm, 150 g), individually packed in air-containing packages, and stored at different temperature (-18℃, -50℃, and -60℃) for 6 months. Chicken leg meats were prepared (10 cm long, weighing 70 g) and packed in the same manner. Frozen samples were thawed at 2℃. Physicochemical properties such as thawing loss, cooking loss, water-holding capacity, color, volatile basic nitrogen (VBN), and thiobarbituric acid reactive substances (TBARS) were evaluated. The samples frozen by deep freezing (-60℃) was favorable with respect to thawing loss, color, and VBN. Samples frozen at -60℃ had lower values of thawing loss and VBN than those frozen at -18℃ for all storage periods (p<0.05). Color parameters were more similar to those of fresh meat than to those of samples frozen at -18℃ for 6 months. The TBARS of all samples were below 0.3 mg malondialdehyde/kg, thereby indicating oxidative stability of lipids. Consequently, deep freezing at -60℃ may be acceptable for maintaining the quality of fresh pork neck and chicken leg meat for 6 months without deterioration.

Acrosomal Changes and Survival of Following Preservation of Dog Spermatozoa II. Effect of Different Freezing Ramp Rates (개 정자의 보존방법에 따른 첨체 및 생존성의 변화 II. 동결보존에 따른 효과)

  • 정정란;유재규;양성열;여현진;박종식
    • Journal of Embryo Transfer
    • /
    • v.16 no.2
    • /
    • pp.133-138
    • /
    • 2001
  • The aim of this study was to identify the method on extended canine semen exposed to freezing as assessed by motility, survival and acrosomal changes following different freezing ramp rates. Five ejaculates collected by digital manipulation twice weekly from three dogs (Shih-Tzu) were added Tris-Egg Yolk (TE) buffer and divided into 4 aliquots according to formulation of our laboratory. After cooling to 4$^{\circ}C$ by ramp rate of 0.6$^{\circ}C$/min, the samples frozen by ramp rates of 1.6$^{\circ}C$/min to -$25^{\circ}C$, 3$^{\circ}C$/min to -35$^{\circ}C$, 8.9$^{\circ}C$/min to -7$0^{\circ}C$ and 19$^{\circ}C$/min to -11$0^{\circ}C$, respectively, and then stored in L$N_2$for 2days. Each sample was evaluated on their motility, survivability and acrosome integrity at different thawing temperature. The ramp rate of 3$^{\circ}C$/min to -35$^{\circ}C$/h for freezing and thawing temperature of 37$^{\circ}C$ obtained the highest results to improve survivability, motile spermatozoa and intact acrosome appearance than other onditions. In conclusion, we may suggest freezing semen for canine artificial insemination is more efficient with freezing at a ramp rate of -3$^{\circ}C$/min to -35$^{\circ}C$ and thawing with a water bath adjusted to 37$^{\circ}C$.

  • PDF