• Title/Summary/Keyword: Thai native chickens

Search Result 8, Processing Time 0.018 seconds

Taste-Active and Nutritional Components of Thai Native Chicken Meat: A Perspective of Consumer Satisfaction

  • Lengkidworraphiphat, Phatthawin;Wongpoomchai, Rawiwan;Bunmee, Thanaporn;Chariyakornkul, Arpamas;Chaiwang, Niraporn;Jaturasitha, Sanchai
    • Food Science of Animal Resources
    • /
    • v.41 no.2
    • /
    • pp.237-246
    • /
    • 2021
  • The taste-active and nutritional components of Thai native, broilers, black-boned, and spent hen chickens were analyzed. The amounts of tasty amino acids especially glutamic acid were the highest in Thai native chicken. The black-boned chicken had the highest arginine content, related to the least amount of consumer satisfaction. Concerning nutritional quality, choline, and taurine were deemed important for brain function. The black-boned chicken showed the highest choline and taurine contents, unlike that of the spent hens. In contrast, broilers presented the highest betaine content, which might be attributed to their lipid metabolism. L-carnitine content was abundant in black-boned and Thai native chickens. Moreover, the amounts of essential amino acids were high in Thai native chicken. In conclusion, black-boned chicken proved to be an excellent nutritional source for health-conscience consumers, whereas the Thai native chickens were flavourful and delicious.

Heat stress effects on the genetics of growth traits in Thai native chickens (Pradu Hang dum)

  • Wuttigrai Boonkum;Vibuntita Chankitisakul;Srinuan Kananit;Wootichai Kenchaiwong
    • Animal Bioscience
    • /
    • v.37 no.1
    • /
    • pp.16-27
    • /
    • 2024
  • Objective: The objective of this study was to investigate the effect of heat stress on the growth traits and genetic parameters of Thai native chickens. Methods: A total of 16,487 records for growth traits of Thai native chickens between 2017 and 2022 were used in this study. Data included the body weight at birth, body weight at 4, 8, and 12 weeks of age (BW0, BW4, BW8, BW12), average daily gain during 0 to 4, 4 to 8, and 8 to 12 weeks of age (ADG0-4, ADG4-8, ADG8-12), absolute growth rate at birth, at 4, 8, and 12 weeks of age (AGR0, AGR4, AGR8, AGR12). The repeatability test day model used the reaction-norm procedure to analyze the threshold point of heat stress, rate of decline of growth traits, and genetic parameters. Results: At temperature and humidity index (THI) of 76, Thai native chickens began to lose their growth traits, which was the onset of heat stress in this study. The estimated heritability, genetic correlation between animal and heat stress effect, and correlations between the intercept and slope of the permanent environmental effects were 0.27, -0.85, and -0.83 for BW, 0.17, -0.81, and -0.95 for ADG, 0.25, -0.61, and -0.83 for AGR, respectively. Male chickens are more affected by heat stress than female chickens with a greater reduction of BW, ADG, and AGR, values equal to -9.30, -0.23, -15.21 (in males) and -6.04, -0.21, -10.10 (in females) gram per 1 level increase of THI from the THI of 76. Conclusion: The influence of thermal stress had a strong effect on the decline in growth traits and genetic parameters in Thai native chickens. This study indicated that genetic models used in conjunction with THI data are an effective method for the analysis and assessment of the effects of heat stress on the growth traits and genetics of native chickens.

Genetic Diversity and Population Structure in Native Chicken Populations from Myanmar, Thailand and Laos by Using 102 Indels Markers

  • Maw, A.A.;Kawabe, Kotaro;Shimogiri, T.;Rerkamnuaychoke, W.;Kawamoto, Y.;Masuda, S.;Okamoto, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.1
    • /
    • pp.14-19
    • /
    • 2015
  • The genetic diversity of native chicken populations from Myanmar, Thailand, and Laos was examined by using 102 insertion and/or deletion (indels) markers. Most of the indels loci were polymorphic (71% to 96%), and the genetic variability was similar in all populations. The average observed heterozygosities ($H_O$) and expected heterozygosities ($H_E$) ranged from 0.205 to 0.263 and 0.239 to 0.381, respectively. The coefficients of genetic differentiation (Gst) for all cumulated populations was 0.125, and the Thai native chickens showed higher Gst (0.088) than Myanmar (0.041) and Laotian (0.024) populations. The pairwise Fst distances ranged from 0.144 to 0.308 among populations. A neighbor-joining (NJ) tree, using Nei's genetic distance, revealed that Thai and Laotian native chicken populations were genetically close, while Myanmar native chickens were distant from the others. The native chickens from these three countries were thought to be descended from three different origins (K = 3) from STRUCTURE analysis. Genetic admixture was observed in Thai and Laotian native chickens, while admixture was absent in Myanmar native chickens.

Thermal impacts on transcriptome of Pectoralis major muscle collected from commercial broilers, Thai native chickens and its crossbreeds

  • Yuwares Malila;Tanaporn Uengwetwanit;Pornnicha Sanpinit;Wipakarn Songyou;Yanee Srimarut;Sajee Kunhareang
    • Animal Bioscience
    • /
    • v.37 no.1
    • /
    • pp.61-73
    • /
    • 2024
  • Objective: The main objective of this study was to define molecular mechanisms associated with thermal stress responses of chickens from commercial broilers (BR, Ross 308), Thai native chickens (NT) and crossbreeds between BR×NT (H75). Methods: Twenty days before reaching specific market age, chickens from each breed were divided into control and thermal-stressed groups. The stressed groups were exposed to a cyclic thermal challenge (35℃±1℃ for 6 h, followed by 26℃±1℃ for 18 h) for 20 days. Control group was raised under a constant temperature of 26℃±1℃. Pectoralis major (n = 4) from each group was collected for transcriptome analysis using HiSeq Illumina and analysis of glycogen and lactate. Gene expression patterns between control and thermal-stressed groups were compared within the same breeds. Results: Differentially expressed transcripts of 65, 59, and 246 transcripts for BR, NT, and H75, respectively, were revealed by RNA-Seq and recognized by Kyoto encyclopedia of genes and genomes database. Pathway analysis underlined altered glucose homeostasis and protein metabolisms in all breeds. The signals centered around phosphatidylinositol 3-kinase (PI3K)/Akt signaling, focal adhesion, and MAPK signaling in all breeds with slight differences in molecular signal transduction patterns among the breeds. An extensive apoptosis was underlined for BR. Roles of AMPK, MAPK signaling and regulation of actin cytoskeleton in adaptive response were suggested for H75 and NT chickens. Lower glycogen content was observed in the breast muscles of BR and NT (p<0.01) compared to their control counterparts. Only BR muscle exhibited increased lactate (p<0.01) upon exposure to the stress. Conclusion: The results provided a better comprehension regarding the associated biological pathways in response to the cyclic thermal stress in each breed and in chickens with different growth rates.

Gene expression of fatty acid binding protein genes and its relationship with fat deposition of Thai native crossbreed chickens

  • Tunim, Supanon;Phasuk, Yupin;Aggrey, Samuel E.;Duangjinda, Monchai
    • Animal Bioscience
    • /
    • v.34 no.4
    • /
    • pp.751-758
    • /
    • 2021
  • Objective: The objectives of this study were to investigate the relationship between the mRNA expression of adipocyte type fatty acid binding protein (A-FABP) and heart type FABP (H-FABP) in Thai native chicken crossbreeds and evaluate the level of exotic inclusion in native chicken that will improve growth while maintaining its relatively low carcass fat. Methods: The fat deposition traits and mRNA expression of A-FABP and H-FABP were evaluated at 6, 8, 10, and 12 weeks of age in 4 chicken breeds (n = 8/breed/wk) (100% Chee breed [CH] [100% Thai native chicken background], CH male and broiler female [Kaimook e-san1; KM1] [50% CH background], broiler male and KM1 female [Kaimook e-san2; KM2] [25% CH background], and broiler [BR]) using abdominal fat (ABF) and muscular tissues. Results: The BR breed was only evaluated at 6 weeks of age. At week 6, the CH breed had a significantly lower A-FABP expression in ABF and intramuscular fat (IF) compared with the other breeds. At 8 to 12 weeks, the KM2 groups showed significant upregulation (p<0.05) of A-FABP in both ABF and IF compared to the CH and KM1 groups. The expression of H-FABP did not follow any consistent pattern in both ABF and IF across the different ages. Conclusion: Some level of crossbreeding CH chickens can be done to improve growth rate while maintaining their low ABF and IF. The expression level of A-FABP correlate with most fat traits. There was no consistency of H-FABP expression across breed. A-FABPs is involved in fat deposition, genetic markers in these genes could be used in marker assisted studies to select against excessive fat accumulation.

Genetic diversity and population genetic structure of Cambodian indigenous chickens

  • Ren, Theary;Nunome, Mitsuo;Suzuki, Takayuki;Matsuda, Yoichi
    • Animal Bioscience
    • /
    • v.35 no.6
    • /
    • pp.826-837
    • /
    • 2022
  • Objective: Cambodia is located within the distribution range of the red junglefowl, the common ancestor of domestic chickens. Although a variety of indigenous chickens have been reared in Cambodia since ancient times, their genetic characteristics have yet to be sufficiently defined. Here, we conducted a large-scale population genetic study to investigate the genetic diversity and population genetic structure of Cambodian indigenous chickens and their phylogenetic relationships with other chicken breeds and native chickens worldwide. Methods: A Bayesian phylogenetic tree was constructed based on 625 mitochondrial DNA D-loop sequences, and Bayesian clustering analysis was performed for 666 individuals with 23 microsatellite markers, using samples collected from 28 indigenous chicken populations in 24 provinces and three commercial chicken breeds. Results: A total of 92 haplotypes of mitochondrial D-loop sequences belonging to haplogroups A to F and J were detected in Cambodian chickens; in the indigenous chickens, haplogroup D (44.4%) was the most common, and haplogroups A (21.0%) and B (13.2%) were also dominant. However, haplogroup J, which is rare in domestic chickens but abundant in Thai red junglefowl, was found at a high frequency (14.5%), whereas the frequency of haplogroup E was considerably lower (4.6%). Population genetic structure analysis based on microsatellite markers revealed the presence of three major genetic clusters in Cambodian indigenous chickens. Their genetic diversity was relatively high, which was similar to findings reported for indigenous chickens from other Southeast Asian countries. Conclusion: Cambodian indigenous chickens are characterized by mitochondrial D-loop haplotypes that are common to indigenous chickens throughout Southeast Asia, and may retain many of the haplotypes that originated from wild ancestral populations. These chickens exhibit high population genetic diversity, and the geographical distribution of three major clusters may be attributed to inter-regional trade and poultry transportation routes within Cambodia or international movement between Cambodia and other countries.

Enhancement of cryopreserved rooster semen and fertility potential after oral administration of Thai ginger (Kaempferia parviflora) extract in Thai native chickens

  • Vibuntita Chankitisakul;Supakorn Authaida;Wuttigrai Boonkum;Sarunya Tuntiyasawasdikul
    • Animal Bioscience
    • /
    • v.37 no.7
    • /
    • pp.1177-1184
    • /
    • 2024
  • Objective: Semen cryopreservation is an effective method of preserving genetic material, particularly in native chicken breeds facing a substantial decline. In this study, we evaluated the quality of frozen/thawed rooster semen treated with different concentrations of oral administrations of black ginger (Kaempferia parviflora: KP) extract and determined its fertility. Methods: Thirty-two Thai native roosters (Pradu Hang Dum, 42 weeks old) were used in this study. The treatments were classified into four groups according to the concentration of KP extract administered to the roosters: 0, 100, 150, and 200 mg/kg body weight. The quality of fresh semen was analyzed before cryopreservation. Post-thaw sperm quality and fertility potential were determined. Also, lipid peroxidation was determined. Results: The results showed that sperm concentration and movement increased in roosters treated with 200 mg/kg of KP extract (p<0.05). The malondialdehyde (MDA) in the roosters receiving 200 mg/kg KP extract was lower than that in the other but had an insignificant difference within the KP treatment groups (p>0.05). The highest MDA levels were observed in the control group (p<0.05). The percentage of motile sperm (total motility and progressive motility) after semen thawing was higher in roosters that received 150 and 200 mg/kg KP extract than in those that received 100 mg/kg KP extract and the control (p<0.05). MDA levels decreased significantly in roosters that received 150 and 200 mg/kg KP extract than in those that received 100 mg/kg KP extract and the control (p<0.05). Fertility and hatchability were greater in the KP150 and KP200 groups than in the KP100 and control groups (p<0.05). Conclusion: The optimal amount of KP extract influencing initial sperm quality was determined to be 200 mg/kg. However, 150 mg/kg was the optimal low dosage of KP extract administration that maintained sperm quality and fertility following semen cryopreservation.

Genetic parameters and inbreeding effects for production traits of Thai native chickens

  • Tongsiri, Siriporn;Jeyaruban, Gilbert M.;Hermesch, Susanne;van der Werf, Julius H.J.;Li, Li;Chormai, Theerachai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.930-938
    • /
    • 2019
  • Objective: Estimate genetic parameters, the rate of inbreeding, and the effect of inbreeding on growth and egg production traits of a Thai native chicken breed Lueng Hang Kao Kabinburi housed under intensive management under a tropical climate. Methods: Genetic parameters were estimated for weight measured at four weekly intervals from body weight at day 1 (BW1D) to body weight at 24 weeks (BW24) of age, as well as weight at first egg, age at first egg (AFE), egg weight at first egg, and total number of eggs (EN) produced during the first 17 weeks of lay using restricted maximum likelihood. Inbreeding depression was estimated using a linear regression of individual phenotype on inbreeding coefficient. Results: Direct additive genetic effect was significant for all traits. Maternal genetic effect and permanent environmental hen effects were significant for all early growth traits, expect for BW24. For BW24, maternal genetic effect was also significant. Permanent environmental hen effect was significant for AFE. Direct heritabilities ranged from 0.10 to 0.47 for growth traits and ranged from 0.15 to 0.16 for egg production traits. Early growth traits had high genetic correlations between them. The EN was lowly negatively correlated with other traits. The average rate of inbreeding for the population was 0.09% per year. Overall, the inbreeding had no effect on body weight traits, except for BW1D. An increase in inbreeding coefficient by 1% reduced BWID by 0.09 g (0.29% of the mean). Conclusion: Improvement in body weight gain can be achieved by selecting for early growth traits. Selection for higher body weight traits is expected to increase the weight of first egg. Due to low but unfavorable correlations with body weight traits, selection on EN needs to be combined with other traits via multi-trait index selection to improve body weight and EN simultaneously.