• Title/Summary/Keyword: Th1 and Th2 immune response

Search Result 173, Processing Time 0.023 seconds

Th1/Th2 Cytokine Modulation in Human PBMC by Acanthopanax divaricatus var. albeofructus

  • Lyu, Su-Yun;Park, Won-Bong
    • Food Science and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.631-636
    • /
    • 2008
  • Acanthopanax divaricatus var. albeofructus (ADA) have been shown to have various levels of activity such as antioxidant, anticancer, antivirus, and immunostimulatory effects. However, little is known about its mechanism related to the modulation of immune activities. In this study, a water extract of ADA leaves were used to treat human peripheral blood mononuclear cells (hPBMC) to determine the underlying mechanisms for the immunostimulatory effects. To characterize its immunomodulatory activity, the secretion level of various cytokines including IL-2, IL-4, IL-6, IL-10, IL-12, IFN-$\gamma$, and TNF-$\alpha$ were measured using enzyme-linked immunosorbent assay (ELISA). Treatment of hPBMC with ADA leaf extract in an in vitro experiment induced various Th1 cytokines in a dose-dependent manner. A significant increase of IL-2, IL-12, IFN-$\gamma$, and TNF-$\alpha$ secretion was observed in the presence of ADA leaf extract. In contrast, Th2 cytokines including IL-4 and IL-6 were suppressed. There was no significant change in IL-10 release. Our results showed an increase in Th1 and a decrease in Th2 cytokine secretion which suggests that ADA may influence the immune response towards a predominance of Th1 cytokines in the immune system.

Evaluation of the Immune Response Following Exposure of Mice to Bisphenol A: Induction of Th1 Cytokine and Prolactin by BPA Exposure in the Mouse Spleen Cells

  • Youn, Ji-Youn;Park, Hyo-Young;Lee, Jung-Won;Jung, In-Ok;Choi, Keum-Hwa;Kim, Kyung-Jae;Cho, Kyung-Hea
    • Archives of Pharmacal Research
    • /
    • v.25 no.6
    • /
    • pp.946-953
    • /
    • 2002
  • Bisphenol A [2, 2 bis (4-hydoxyphenyl) propane; BPA] is a widely used endocrine disruptors and has estrogenic: activities. Although interests on biological effect of BPA are rising, evidences of its effect on immune system are lacking. We investigated that the effect of BPA on immune parameters to postulate the mechanism, and BPA interruptions between neuroendocrine and immune system. BPA was administrated to mice by p.o. (as a drinking water) dose on 0.015, 1.5 and 30 mg/ml for 4 weeks. The BPA treatment did not result in any change in body weight, spleen weight and distribution of lymphocyte subpopulation collected from spleen. BPA induced prolactin production in spleen, and exposure of SPA increased the activity of splenocyte proliferation in response to Con A (p<0.001). The production of a strong Th-1 type cytokine ($IFN-{\gamma}$) was induced while Th-2 type (IL-4) was suppressed by SPA treatment. These were consistent with RT-PCR results of transcription factor GATA-3 and IRF-1. These findings suggested that stimulation of prolactin production by estrogenic effects of SPA would affect cytokine profiles, and lead to imbalanced cellular immune response. In addition, we could speculate that prolactin and cytokine is important mediator involved in network between neuroendocrine and immune system by BPA.

Comparative Study of the Endotoxemia and Endotoxin Tolerance on the Production of Th Cytokines and Macrophage Interleukin-6: Differential Regulation of Indomethacin

  • Chae, Byeong-Suk
    • Archives of Pharmacal Research
    • /
    • v.25 no.6
    • /
    • pp.910-916
    • /
    • 2002
  • Endotoxin tolerance reduces the capacity of monocytes to produce proinflammatory cytokines, results in cellular immune paralysis, and down-regulates the production of helper T (Th)1 type cytokines with a shift toward a Th2 cytokine response. Prostaglandin (PG)E$_2$ in the immune system also results in macrophage inactivation and the suppression of Th1 activation and the enhancement of Th2 activation. However, the inhibitory effects of PGE$_2$ on the altered polarization of the Th cell and macrophage interleukin (IL)-6 production characterized in part by cellular immune paralysis in a state of endotoxin tolerance is unclear. This study was undertaken, using indomethacin, to investigate the role of endogenous PGE$_2$ on the Th cytokines and macrophage IL-6 production in a state of endotoxin tolerance compared to those with endotoxemia mice, wherein, in this latter case, the increased production of proinflammatory cytokines and PGE$_2$ is exhibited. Endotoxemia was induced by injection of lipopolysaccharide (LPS; 10 mg/kg in saline) i.p. once in BALB/c mice, and endotoxin tolerance was induced by pretreatment with LPS (1 mg/kg in saline) injected i.p. daily for two consecutive days and then with LPS 10 mg/kg on day 4. Splenocytes or macrophages were obtained from endotoxemia and endotoxin tolerance models pretreated with indomethacin, and then cytokine production was induced by Con A-stimulated splenocytes for the Th cytokine assays and LPS-stimulated macrophages for the IL-6 assay. Our results showed that endotoxemia led to significantly reduced IL-2 and IL-4 production, to significantly increased IL-6 production, whereas interferon $(IFN)-{\gamma}$ production was not affected. Indomethacin in the case of endotoxemia markedly attenuated $IFN-{\gamma}$ and IL-6 production and didnt reverse IL-2 and IL-4 production. Endotoxin tolerance resulted in the significantly reduced production of IL-2 and $IFN-{\gamma}$ and the significantly increased production of IL-4 and IL-6. Indomethacin in endotoxin tolerance greatly augmented IL-2 production, significantly decreased IL-4 production, and slightly attenuated IL-6 production. These findings indicate that endogenous PGE$_2$ may mediate the suppressed Th1 type immune response, with a shift toward a Th2 cytokine response in a state of endotoxin tolerance, whereas endotoxemia may be regulated differentially. Also, endogenous PGE$_2$ may mediate macrophage IL-6 production in the case of endotoxemia to a greater extent than in the case of endotoxin tolerance.

Study of Cell-mediated Response in Mice by HPV16 L1 Virus-like Particles Expressed in Saccharomyces cerevisiae

  • Woo, Mi-Kyung;Hur, Sook-Jin;Park, Sue-NIe;Kim, Hong-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.10
    • /
    • pp.1738-1741
    • /
    • 2007
  • The first vaccine against human papillomaviruses (HPV) formulated with HPV16 L1 virus-like particles (VLPs) produced in yeast was approved by the FDA in June 2006. Nevertheless, there have been few studies of the immunogenicity in mice of VLPs. In this study, we evaluated the cell-mediated immune response to VLPs produced in Saccharomyces cerevisiae. After immunization of mice with HPV16 L1 VLPs, we measured splenocytes proliferation and the levels of IFN$_{\gamma}$, IL2, IL4, and IL5. Splenocytes proliferation was significantly increased and a mixed Th1/Th2 response was indicated. IgG subtype immunoresponses were strongly induced and IgG1 titers were higher than those of IgG2a.

Effect of Kamikwiryongtang on Immune Response and Growth in a Young Mouse (가미귀용탕(加味歸茸湯)이 새끼 생쥐의 면역반응(免疫反應) 및 성장(成長)에 미치는 영향(影響))

  • Kim, Yun-Hee;Yoo, Dong-Youl;Lee, Kyeong-Im
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.221-246
    • /
    • 2004
  • Objective: The purpose of this study was to investigate the effects of Kamikwiryongtang (KKT) on the immune response and growth in a young mouse (3 weeks mice). Methods The viability of thymocytes and splenocytes in vivo and in vitro system, the population of helper T (Th) cells and cytotoxic T (Tc) cells in thymocytes and increased the population of T-lymphocytes and the population of Th cells in splenocytes, the production of ${\gamma}$ -interferon, interleukin-2 and interleukin-4 in splenocytes was investigated. KKT (500mg/kg) was administerd p.o. once a day for 7 days. Results: KKT increased the viability of thymocytes and splenocytes in vivo, but did not affect the viability of thymocytes and enhanced the viability of splenocytes in vitro system. In addition, KKT did not affect the population of helper T (Th) cells and cytotoxic T (Tc) cells in thymocytes and increased the population of T -lymphocytes and the population of Th cells in splenocytes. Also, KKT increased the production of ${\gamma}$-interferon, interleukin-2 and interleukin-4 in splenocytes. Furthermore, KKT increased the production of nitric oxide in vivo, but did not affect the production of nitric oxide in vitro system. KKT enhanced the phagocytic activity of peritoneal macrophages in vivo, but decreased the phagocytic activity in vitro system: KKT increased the body weight of a young mouse. Conclusions: KKT stimulates the specific immune response via increase of, the viability of thymocytes and splenocytes and the non-specific immune response via increase of phagocytic activity of peritoneal macrophages and stimulates the growth of a young mouse.

  • PDF

Modulation of Immune Response Induced by Co-Administration of DNA Vaccine Encoding HBV Surface Antigen and HCV Envelope Antigen in BALB/c Mice

  • Nam, Sang-Hyun;Park, Jae-Hyun;Kang, Ju-Hye;Kang, Seog-Youn;Kim, Jae-Hong;Kim, So-Young;Ahn, Joon-Ik;Park, Ki-Sook;Chung, Hye-Joo
    • Archives of Pharmacal Research
    • /
    • v.29 no.11
    • /
    • pp.1042-1048
    • /
    • 2006
  • Plasmid DNA vaccines encoding the hepatitis B virus (HBV) surface and hepatitis C virus (HCV) envelope antigens, respectively, were constructed, and attempt were made to find the possibility of a divalent vaccine against HBV and HCV. The expression of each plasmid in Cos-1 cells was confirmed using immunocytochemistry. To measure the induced immune response by these plasmids in vivo, female BALB/c mice were immunized intramuscularly with $100\;{\mu}g$ of either both or just one of the plasmids. Anti-HBV and HCV-specific antibodies and related cytokines were evaluated to investigate the generation of both humoral and cellular immune responses. As a result, specific anti-HBV and anti-HCV serum antibodies from mice immunized with these plasmids were observed using immunoblot. The levels of IL-2 and RANTES showing a $Th_{1}$ immune response were significantly increased, but there was no change in the level of IL-4 ($Th_{1}$ immune response) in any of the immunized groups. Compared with each plasmid DNA vaccine, the combined vaccine elicited similar immune responses in both humoral and cell-mediated immunities. These results suggest that the combined DNA vaccine can induce not only comparable immunity experimentally without antigenic interference, but also humoral and $Th_{1}$ dominant cellular immune responses. Therefore, they could serve as candidates for a simultaneous bivalent vaccine against HBV and HCV infections.

Efficient Induction of Th1-type Immune Responses to Hepatitis B Virus Antigens by DNA Prime-Adenovirus Boost

  • Lee, Chang-Geun;Yang, Se-Hwan;Park, Su-Hyung;Song, Man-Ki;Choi, So-Young;Sung, Young-Chul
    • IMMUNE NETWORK
    • /
    • v.5 no.1
    • /
    • pp.1-10
    • /
    • 2005
  • Background: Chronic infection with hepatitis B virus (HBV) affects about 350 million people worldwide, which have a high risk of development of cirrhosis and hepatocellular carcinoma. Treatment of chronic HBV infection relies on IFN-${\alpha}$ or lamivudine. However, interferon-${\alpha}$ is effective in only about 30% of patients. Also, the occurrence of escape mutations limits the usage of lamivudine. Therefore, the development and evaluation of new compounds or approaches are urgent. Methods: We comparatively evaluated DNA and adenoviral vaccines expressing HBV antigens, either alone or in combined regimens, for their ability to elicit Th1-type immune responses in Balb / c mice which are believed to be suited to resolve HBV infection. The vaccines were tested with or without a genetically engineered IL-12 (mIL-12 N220L) which was shown to enhance sustained Th1-type immune responses in HCV E2 DNA vaccine. Results: Considering the Th1-type cytokine secretion and the IgG2a titers, the strongest Th1-type immune response was elicited by the DNA prime-adenovirus boost regimen in the presence of mIL-12 N220L. In addition, the codelivery of mIL-12 N220L modulated differentially the immune responses by different vaccination regimens. Conclusion: Our results suggest that the DNA prime-adenovirus boost regimen in the presence of mIL-12 N220L may be the best candidate for HBV vaccine therapy of the regimens tested in this study and will be worthwhile being evaluated in chronic HBV patients.

Dead Lactobacillus plantarum Stimulates and Skews Immune Responses toward T helper 1 and 17 Polarizations in RAW 264.7 Cells and Mouse Splenocytes

  • Lee, Hyun Ah;Kim, Hyunung;Lee, Kwang-Won;Park, Kun-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.469-476
    • /
    • 2016
  • This study was undertaken to evaluate the immunomodulatory effect of dead nano-sized Lactobacillus plantarum (nLp) in RAW 264.7 cells and murine primary splenocytes. nLp is a dead, shrunken, processed form of L. plantarum nF1 isolated from kimchi (a traditional Korean fermented cabbage) and is less than 1 μm in size. It was found that nLp treatment stimulated nitric oxide (NO) production more in RAW 264.7 macrophages than pure live L. plantarum (pLp), and that the stimulatory properties were probably largely derived from its cell wall. In addition, nLp induced murine splenocyte proliferation more so than pLp; in particular, a high dose of nLp (1.0 × 1011 CFU/ml) stimulated proliferation as much as lipopolysaccharide at 2 μg/ml. Moreover, according to our cytokine profile results in splenocytes, nLp treatment promoted Th1 (TNF-α, IL-12 p70) responses rather than Th2 (IL-4, IL-5) responses and also increased Th17 (IL-6, IL-17A) responses. Thus, nLp stimulated NO release in RAW 264.7 cells and induced splenocyte proliferation more so than pLp and stimulated Th1 and Th17 cytokine production. These findings suggested that dead nLp has potential use as a functional food ingredient to improve the immune response, and especially as a means of inducing Th1/Th17 immune responses.

Immunoregulatory Effect of Ginsenoside Rd against $CD4^+$ Th lymphocyte (인삼배당체 Rd의 $CD4^+$ Th 임파구에 대한 면역조절효과)

  • Joo, Inkyung;Kim, Jeonghyeon;Shehzad, Omer;Kim, Yeong Shik;Han, Yongmoon
    • YAKHAK HOEJI
    • /
    • v.57 no.1
    • /
    • pp.37-42
    • /
    • 2013
  • In this present study, we determined the immunoregulatory activity of ginsenoside Rd extract from Panax ginseng. To determine the activity, we tested Rd against $CD4^+$ Th cells in a murine model of type 1 diabetes, which involves Th1-dominant immunity. The type 1 diabetes was caused by streptozotocin (STZ) and the severity of the diabetes was evaluated by measuring the degree of hyperglycemia, a major symptom of diabetes. The data resulting from experiments showed that ginsenoside Rd induced a greater level of Th1 type cytokines [IFN-${\gamma}$ & IL-2] than Th2 type [IL-4 & IL-10] (P<0.05), which was determined by cytokine profile analysis. In the animal model of diabetes, the depletion of $CD4^+$ Th cells by a treatment of anti-CD4 mAb resulted in considerably lower values of blood-glucose levels than those of the mAb-untreated mice, which indicates that the Th1 immune response from $CD4^+$ Th cells are responsible for diabetes. Based on these observations, the effect of Rd on diabetes was examined in the same animal model. Results showed that Rd-treated mice groups had increased levels of blood glucose compared to Rd-untreated mice groups that were used as a negative control (P<0.05). In other words, Rd aggravated the diabetes via the Th1 immune response. In conclusion, ginsenoside Rd had an immunoregulatory activity of Th1-dominant immunity.

Oral Administration of Phosphorylated Dextran Regulates Immune Response in Ovalbumin-Immunized Mice

  • Nagasawa, Chiho;Nishimura-Uemura, Junko;Tohno, Masanori;Shimosato, Takeshi;Kawai, Yasushi;Ikegami, Shuji;Oda, Munehiro;Saito, Tadao;Kitazawa, Haruki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.1
    • /
    • pp.106-115
    • /
    • 2010
  • Phosphorylated dextran (P-Dex) is an acidic polysaccharide that functions as an immune adjuvant. P-Dex is known to regulate immune response by maintaining a balance between Th1 and Th2 cells in vitro, and thus may also be important in the control of allergic reactions. In the current study, we report the optimum conditions required for the efficient phosphorylation of dextran without toxicity. We found that when dextran was heated at 160${^{\circ}C}$ for 24 h in phosphate buffer (pH 5.0), the resulting P-Dex demonstrated the highest phosphorus content (6.8%). We also report that P-Dex enhances mitogenic activity in mouse splenocytes and induces expression of CD69 and CD86 on the surface of B cells and dendritic cells (DC) in vitro. Oral administration of P-Dex to ovalubmin (OVA)-immunized mice was found to reduce antigen-induced cell proliferation and suppress the expression of CD86 on Th2-inducing DC via exogenous OVA stimulation. P-Dex was also found to increase IL-10 expression in the splenocytes of treated mice. These findings suggest that oral administration of P-Dex increases immunological tolerance and improves the specificity of immunological response to specific antigens.