• 제목/요약/키워드: Texture defect classification

검색결과 7건 처리시간 0.024초

타이어 밴드 직물의 불량유형 분류를 위한 불량 픽셀 하이라이팅 (Highlighting Defect Pixels for Tire Band Texture Defect Classification)

  • 소로;고재필
    • 한국항행학회논문지
    • /
    • 제26권2호
    • /
    • pp.113-118
    • /
    • 2022
  • 사람은 독서나 필기 중 중요 문구를 형광펜으로 칠하는 것에서 착안하여, 본 논문에서는 복잡한 배경 질감을 가진 영상에서의 불량유형을 효과적으로 분류하기 위해 불량 픽셀 영역을 하이라이팅 하여 신경망을 훈련하는 방법을 제안한다. 제안 방법의 가능성을 검증하기 위하여 불량유형 구분이 매우 어려운 타이어 밴드 직물의 불량유형 분류에 제안 방법을 적용한다. 또한, 타이어 밴드 직물 영상에 특화된 백라이트 하이라이팅 방법을 제안한다. 백라이트 하이라이트 영상은 GradCAM 기법과 간단한 영상처리를 이용하여 획득할 수 있다. 실험에서 우리는 제안하는 하이라이팅 기법이 분류 정확도뿐만 아니라 훈련속도 면에서 기존 방법보다 우수함을 보였다. 인식률 면에서는 제안 방법이 기존 방법 대비 최대 13.4%의 향상을 달성하였다. 타이어 밴드 직물 영상에 특화된 백라이트 하이라이팅 기법이 윤곽 하이라이팅 기법보다 정확도 측면에서 우수함을 보였다.

Texture Analysis and Classification Using Wavelet Extension and Gray Level Co-occurrence Matrix for Defect Detection in Small Dimension Images

  • Agani, Nazori;Al-Attas, Syed Abd Rahman;Salleh, Sheikh Hussain Sheikh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.2059-2064
    • /
    • 2004
  • Texture analysis is an important role for automatic visual insfection. This paper presents an application of wavelet extension and Gray level co-occurrence matrix (GLCM) for detection of defect encountered in textured images. Texture characteristic in low quality images is not to easy task to perform caused by noise, low frequency and small dimension. In order to solve this problem, we have developed a procedure called wavelet image extension. Wavelet extension procedure is used to determine the frequency bands carrying the most information about the texture by decomposing images into multiple frequency bands and to form an image approximation with higher resolution. Thus, wavelet extension procedure offers the ability to robust feature extraction in images. Then the features are extracted from the co-occurrence matrices computed from the sub-bands which performed by partitioning the texture image into sub-window. In the detection part, Mahalanobis distance classifier is used to decide whether the test image is defective or non defective.

  • PDF

텍스처 분석 알고리즘과 피혁 자동 선별 시스템에의 응용 (Texture Analysis Algorithm and its Application to Leather Automatic Classification Inspection System)

  • 김명재;이명수;권장우;김광섭;길경석
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2001년도 추계종합학술대회
    • /
    • pp.363-366
    • /
    • 2001
  • 현재 육안에 의한 피혁의 등급 판정 과정은 장시간 시 피로에 의한 일관성 결여로 인해 판정 결과에 대한 신뢰성을 주지 못한다. 따라서 피혁의 품질을 결정하기 위한 객관적인 지표와 이를 기준으로 등급 판정 과정의 자동화가 필요하다. 본 논문에서 적용된 피혁 자동 선별 시스템은 피혁에 대한 정보를 취득하는 과정과 이들 정보로부터 등급을 판정하는 과정으로 구성된다. 피혁의 품질은 조밀도와 결함의 종류 및 분포도와 같은 피혁 정보에 의해 결정된다. 본 논문에서는 디지털 카메라에 의해 획득된 흑백 영상으로부터 피혁의 조밀도 및 결함에 대한 정보를 추출하는 알고리즘을 제안한다. 조밀도에 대한 정보는 원 영상을 주파수 영역으로 변환한 후 나타나는 퓨리에 스펙트럼 분포의 특징 값들에 의해서 추출된다. 그리고 결함에 대한 정보는 전처리 과정을 거친 영상으로부터 경계선 검출 후 검색 윈도우를 사용하여 윈도우에 해당하는 픽셀들의 통계적 수치에 의해서 검출된다. 피혁 전체에 대한 정보들은 피혁의 등급을 판정하는 지표로 사용되며 실제 머신 비젼 시스템에 적용된다.

  • PDF

Oil Pipeline Weld Defect Identification System Based on Convolutional Neural Network

  • Shang, Jiaze;An, Weipeng;Liu, Yu;Han, Bang;Guo, Yaodan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권3호
    • /
    • pp.1086-1103
    • /
    • 2020
  • The automatic identification and classification of image-based weld defects is a difficult task due to the complex texture of the X-ray images of the weld defect. Several depth learning methods for automatically identifying welds were proposed and tested. In this work, four different depth convolutional neural networks were evaluated and compared on the 1631 image set. The concavity, undercut, bar defects, circular defects, unfused defects and incomplete penetration in the weld image 6 different types of defects are classified. Another contribution of this paper is to train a CNN model "RayNet" for the dataset from scratch. In the experiment part, the parameters of convolution operation are compared and analyzed, in which the experimental part performs a comparative analysis of various parameters in the convolution operation, compares the size of the input image, gives the classification results for each defect, and finally shows the partial feature map during feature extraction with the classification accuracy reaching 96.5%, which is 6.6% higher than the classification accuracy of other existing fine-tuned models, and even improves the classification accuracy compared with the traditional image processing methods, and also proves that the model trained from scratch also has a good performance on small-scale data sets. Our proposed method can assist the evaluators in classifying pipeline welding defects.

텍스쳐 분석에 의한 피혁 등급 판정 및 자동 선별시스템에의 응용 (Automatic Leather Quality Inspection and Grading System by Leather Texture Analysis)

  • 권장우;김명재;길경석
    • 한국멀티미디어학회논문지
    • /
    • 제7권4호
    • /
    • pp.451-458
    • /
    • 2004
  • 육안에 의한 피혁의 등급 판정 과정은 장시간 시 피로에 의한 일관성 결여로 인해 판정 결과에 대한 신뢰성을 주지 못한다. 따라서 피혁의 품질을 결정하기 위한 객관적인 지표와 이를 기준으로 등급 판정 과정의 자동화가 필요하다. 본 논문에서 적용된 피혁 자동 선별 시스템은 피혁에 대한 정보를 취 득하는 과정과 이들로부터 등급을 판정하는 과정으로 구성된다. 피혁의 품질은 조밀도와 결함의 종류 및 분포도와 같은 피혁의 특성에 의해 결정된다. 본 논문에서는 디지털 카메라에 의해 획득된 흑백 영상으로부터 피혁의 조밀도 및 결함을 추출하여 피혁의 등급을 판정하는 알고리즘을 제안한다. 조밀도는 퓨리에 스펙트럼이 존재하는 영역의 넓이 및 가로, 세로 비율로서 계산된다. 그리고 결함은 전처리 과정을 거친 영상으로부터 검색 윈도우를 사용하여 윈도우에 해당하는 픽셀들의 히스토그램 분포의 특징에 의해서 검출된다. 피혁 전체에 대한 특성들은 피혁의 등급을 판정하는 지표로 사용되며 다른 분야에서의 인간의 시각 검사를 대체 할 수 있으리라 판단된다.

  • PDF

공압출 다층 플라스틱 필름 라인을 위한 결함 검사 시스템 (An Inspection System for Multilayer Co-Extrusion Blown Plastic Film Line)

  • 한종우;무하마드 타릭 마흐무드;최영규
    • 반도체디스플레이기술학회지
    • /
    • 제11권2호
    • /
    • pp.45-51
    • /
    • 2012
  • Multilayer co-extrusion blown film construction is a popular technique for producing plastic films for various packaging industries. Automated detection of defective films can improve the quality of film production process. In this paper, we propose a film inspection system that can detect and classify film defects robustly. In our system, first, film images are acquired through a high speed line-scan camera under an appropriate lighting system. In order to detect and classify film defects, an inspection algorithm is developed. The algorithm divides the typical film defects into two groups: intensity-based and texture-based. Intensity-based defects are classified based on geometric features. Whereas, to classify texture-based defects, a texture analysis technique based on local binary pattern (LBP) is adopted. Experimental results revealed that our film inspection system is effective in detecting and classifying defects for the multilayer co-extrusion blown film construction line.

시각 장치를 이용한 직불 결합 인식에 관한 연구 (A Study on The Visual Inspection of Fabric Defects)

  • 경계현;고명삼;이상욱;이범희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 정기총회 및 창립40주년기념 학술대회 학회본부
    • /
    • pp.311-315
    • /
    • 1987
  • This paper describes the automatic visual inspect ion system of fabric defects based on pattern recognition techniques. To extract features for detection of fabric defects, four different techniques such as SGLDM. GCM, decorrelation method, and Laws' texture measure were investigated. From results of computer simulation, it has been found that GCM and decorrelation techniques provide good features. By employing a simple statistical pattern recognition technique, theaccuracy of classification of defect and nondefect was more than 90%. Some experimental results arm also presented.

  • PDF