• Title/Summary/Keyword: Texture defect classification

Search Result 7, Processing Time 0.024 seconds

Highlighting Defect Pixels for Tire Band Texture Defect Classification (타이어 밴드 직물의 불량유형 분류를 위한 불량 픽셀 하이라이팅)

  • Rakhmatov, Shohruh;Ko, Jaepil
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.2
    • /
    • pp.113-118
    • /
    • 2022
  • Motivated by people highlighting important phrases while reading or taking notes we propose a neural network training method by highlighting defective pixel areas to classify effectively defect types of images with complex background textures. To verify our proposed method we apply it to the problem of classifying the defect types of tire band fabric images that are too difficult to classify. In addition we propose a backlight highlighting technique which is tailored to the tire band fabric images. Backlight highlighting images can be generated by using both the GradCAM and simple image processing. In our experiment we demonstrated that the proposed highlighting method outperforms the traditional method in the view points of both classification accuracy and training speed. It achieved up to 13.4% accuracy improvement compared to the conventional method. We also showed that the backlight highlighting technique tailored for highlighting tire band fabric images is superior to a contour highlighting technique in terms of accuracy.

Texture Analysis and Classification Using Wavelet Extension and Gray Level Co-occurrence Matrix for Defect Detection in Small Dimension Images

  • Agani, Nazori;Al-Attas, Syed Abd Rahman;Salleh, Sheikh Hussain Sheikh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.2059-2064
    • /
    • 2004
  • Texture analysis is an important role for automatic visual insfection. This paper presents an application of wavelet extension and Gray level co-occurrence matrix (GLCM) for detection of defect encountered in textured images. Texture characteristic in low quality images is not to easy task to perform caused by noise, low frequency and small dimension. In order to solve this problem, we have developed a procedure called wavelet image extension. Wavelet extension procedure is used to determine the frequency bands carrying the most information about the texture by decomposing images into multiple frequency bands and to form an image approximation with higher resolution. Thus, wavelet extension procedure offers the ability to robust feature extraction in images. Then the features are extracted from the co-occurrence matrices computed from the sub-bands which performed by partitioning the texture image into sub-window. In the detection part, Mahalanobis distance classifier is used to decide whether the test image is defective or non defective.

  • PDF

Texture Analysis Algorithm and its Application to Leather Automatic Classification Inspection System (텍스처 분석 알고리즘과 피혁 자동 선별 시스템에의 응용)

  • 김명재;이명수;권장우;김광섭;길경석
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.363-366
    • /
    • 2001
  • The present process of grading leather quality by the rare eyes is not reliable. Because inconsistency of grading due to eyes strain for long time can cause incorrect result of grading. Therefore it is necessary to automate the process of grading quality of leather based on objective standard for it. In this paper, leather automatic classification system consists of the process obtaining the information of leather and the process grading the quality of leather from the information. Leather is graded by its information such as texture density, types and distribution of defects. This paper proposes the algorithm which sorts out leather information like texture density and defects from the gray-level images obtained by digital camera. The density information is sorted out by the distribution value of Fourier spectrum which comes out after original image is converted to the image in frequency domain. And the defect information is obtained by the statistics of pixels which is relevant to Window using searching Window after sort out boundary lines from preprocessed images. The information for entire leather is used as standard of grading leather quality, and the proposed algorithm is practically applied to machine vision system.

  • PDF

Oil Pipeline Weld Defect Identification System Based on Convolutional Neural Network

  • Shang, Jiaze;An, Weipeng;Liu, Yu;Han, Bang;Guo, Yaodan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1086-1103
    • /
    • 2020
  • The automatic identification and classification of image-based weld defects is a difficult task due to the complex texture of the X-ray images of the weld defect. Several depth learning methods for automatically identifying welds were proposed and tested. In this work, four different depth convolutional neural networks were evaluated and compared on the 1631 image set. The concavity, undercut, bar defects, circular defects, unfused defects and incomplete penetration in the weld image 6 different types of defects are classified. Another contribution of this paper is to train a CNN model "RayNet" for the dataset from scratch. In the experiment part, the parameters of convolution operation are compared and analyzed, in which the experimental part performs a comparative analysis of various parameters in the convolution operation, compares the size of the input image, gives the classification results for each defect, and finally shows the partial feature map during feature extraction with the classification accuracy reaching 96.5%, which is 6.6% higher than the classification accuracy of other existing fine-tuned models, and even improves the classification accuracy compared with the traditional image processing methods, and also proves that the model trained from scratch also has a good performance on small-scale data sets. Our proposed method can assist the evaluators in classifying pipeline welding defects.

Automatic Leather Quality Inspection and Grading System by Leather Texture Analysis (텍스쳐 분석에 의한 피혁 등급 판정 및 자동 선별시스템에의 응용)

  • 권장우;김명재;길경석
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.4
    • /
    • pp.451-458
    • /
    • 2004
  • A leather quality inspection by naked eyes has known as unreliable because of its biological characteristics like accumulated fatigue caused from an optical illusion and biological phenomenon. Therefore it is necessary to automate the leather quality inspection by computer vision technique. In this paper, we present automatic leather qua1ity classification system get information from leather surface. Leather is usually graded by its information such as texture density, types and distribution of defects. The presented algorithm explain how we analyze leather information like texture density and defects from the gray-level images obtained by digital camera. The density data is computed by its ratio of distribution area, width, and height of Fourier spectrum magnitude. And the defect information of leather surface can be obtained by histogram distribution of pixels which is Windowed from preprocessed images. The information for entire leather could be a standard for grading leather quality. The proposed leather inspection system using machine vision can also be applied to another field to substitute human eye inspection.

  • PDF

An Inspection System for Multilayer Co-Extrusion Blown Plastic Film Line (공압출 다층 플라스틱 필름 라인을 위한 결함 검사 시스템)

  • Hahn, Jong Woo;Mahmood, Muhammad Tariq;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.2
    • /
    • pp.45-51
    • /
    • 2012
  • Multilayer co-extrusion blown film construction is a popular technique for producing plastic films for various packaging industries. Automated detection of defective films can improve the quality of film production process. In this paper, we propose a film inspection system that can detect and classify film defects robustly. In our system, first, film images are acquired through a high speed line-scan camera under an appropriate lighting system. In order to detect and classify film defects, an inspection algorithm is developed. The algorithm divides the typical film defects into two groups: intensity-based and texture-based. Intensity-based defects are classified based on geometric features. Whereas, to classify texture-based defects, a texture analysis technique based on local binary pattern (LBP) is adopted. Experimental results revealed that our film inspection system is effective in detecting and classifying defects for the multilayer co-extrusion blown film construction line.

A Study on The Visual Inspection of Fabric Defects (시각 장치를 이용한 직불 결합 인식에 관한 연구)

  • Kyung, Kye-Hyun;Ko, Myoung-Sam;Lee, Sang-Uk;Lee, Bum-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.311-315
    • /
    • 1987
  • This paper describes the automatic visual inspect ion system of fabric defects based on pattern recognition techniques. To extract features for detection of fabric defects, four different techniques such as SGLDM. GCM, decorrelation method, and Laws' texture measure were investigated. From results of computer simulation, it has been found that GCM and decorrelation techniques provide good features. By employing a simple statistical pattern recognition technique, theaccuracy of classification of defect and nondefect was more than 90%. Some experimental results arm also presented.

  • PDF