• 제목/요약/키워드: Texture compression

검색결과 148건 처리시간 0.028초

Intra-picture Block-matching Method for Codebook-based Texture Compression

  • Cui, Li;Jang, Euee S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권10호
    • /
    • pp.5063-5073
    • /
    • 2016
  • In this paper, an efficient texture compression method is proposed for fast rendering, which exploits the spatial correlation among blocks through intra-picture block matching. Texture mapping is widely used to enhance the visual quality of results in real-time rendering applications. For fast texture mapping, it is necessary to identify an effective trade-off between compression efficiency and computational complexity. The conventional compression methods utilized for image processing (e.g., JPEG) provide high compression efficiency while resulting in high complexity. Thus, low complexity methods, such as ETC1, are often used in real-time rendering applications. Although these methods can achieve low complexity, the compression efficiency is still lower than that of JPEG. To solve this problem, we propose a texture compression method by reducing the spatial redundancy between blocks in order to achieve the better compression performance than ETC1 while maintaining complexity that is lower than that of JPEG. Experimental results show that the proposed method achieves better compression efficiency than ETC1, and the decoding time is significantly reduced compared to JPEG while similar to ETC1.

A Hybrid Texture Coding Method for Fast Texture Mapping

  • Cui, Li;Kim, Hyungyu;Jang, Euee S.
    • Journal of Computing Science and Engineering
    • /
    • 제10권2호
    • /
    • pp.68-73
    • /
    • 2016
  • An efficient texture compression method is proposed based on a block matching process between the current block and the previously encoded blocks. Texture mapping is widely used to improve the quality of rendering results in real-time applications. For fast texture mapping, it is important to find an optimal trade-off between compression efficiency and computational complexity. Low-complexity methods (e.g., ETC1 and DXT1) have often been adopted in real-time rendering applications because conventional compression methods (e.g., JPEG) achieve a high compression ratio at the cost of high complexity. We propose a block matching-based compression method that can achieve a higher compression ratio than ETC1 and DXT1 while maintaining computational complexity lower than that of JPEG. Through a comparison between the proposed method and existing compression methods, we confirm our expectations on the performance of the proposed method.

패치 영상의 효율적 압축을 위한 전처리 방법 (Preprocessing Method for Efficient Compression of Patch-based Image)

  • 이신욱;이선영;장은영;허남호;장의선
    • 방송공학회논문지
    • /
    • 제13권1호
    • /
    • pp.109-118
    • /
    • 2008
  • 텍스처 영상 압축은 JPEG과 같은 영상 압축 표준을 사용한다. 일반 텍스처 영상에는 JPEG으로도 좋은 압축 성능을 내지만 패치 텍스처 영상은 이러한 영상 압축 기술로 압축했을 때 좋은 압축 성능을 보이지 못하였다. 이를 보완하고 압축 성능을 높이기 위해 기존의 패치 텍스처 영상에 주변 화소간에 색차를 줄이기 위한 전처리 기술을 소개하고, 제안된 기술과 JPEG 압축을 순서대로 적용하였을 때 압축 성능이 23%에서 45%까지 향상됨을 보이고자 한다.

압착율에 따른 전분 gel의 Texture Profile Parameter의 변화 (Effect of Degree of Compression on Texture Profile Parameters of Starch gels)

  • 윤계순
    • 대한가정학회지
    • /
    • 제26권3호
    • /
    • pp.103-108
    • /
    • 1988
  • Texture Profile Analysis (TPA) on cowpea and mung bean starch gels was performed with the Instron and the effect of the degree of compression on TPA parameters measured. Fracturability was almost independent of the degree of compression. hardness usually increased with increasing compression. Cohesiveness and chewiness decreased for mung bean starch gel as compression increases. Springiness in two starch gels increased a little from 55% to 65% compression and then decreased from 75% to 95% compression. Gumminess for mung bean starch gels decreased steeply from 55% to 75% compression, then it increased moderately up to 95% compression. Since the TPA parameters vary so widely with degree of compression, all TPA measurements should standardize the degree of compression.

  • PDF

A High Image Compression for Computer Storage and Communication

  • 장종환
    • 자연과학논문집
    • /
    • 제4권
    • /
    • pp.191-220
    • /
    • 1991
  • Human Visual System(HVS)의 특성과 image의 textural regions의 roughness을 이용하여 image segmentation을 행하여 high compression에서도 고화질을 나타내는 새로운 image coder를 이 논문에서 논한다. 제안된 image coder는 constant segments를 가진 segmentation-based image coding technique의 문제들을 다음과 같은 방법론을 제안함으로써 해결하였다. Image를 HVS으로 보았을 때 degree of roughness에 관하여 textually homogeneous regions으로 segmentation하였다. Fractal dimension을 roughness of textural regions을 측정하기 위하여 사용하였다. Segmentation은 fractal dimension을 thresholding하여 textural regions이 three texture classes로 분류하였다(perceived constant intensity, smooth texture, and rough texture). High compression을 가지는 고질화의 image coder는 각각의 segment boundary와 각각의 texture class에 효율적인 coding technique를 적용 함으로 얻었다.

  • PDF

삼차원 메쉬 모델의 텍스처 좌표 부호화를 위한 텍스처 영상의 재배열 방법 (Texture Image Rearrangement for Texture Coordinate Coding of Three-dimensional Mesh Models)

  • 김성열;호요성
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.963-966
    • /
    • 2005
  • Previous works related to texture coordinate coding of the three-dimensional(3-D) mesh models employed the same predictor as the geometry coder. However, discontinuities in the texture coordinates cause unreasonable prediction. Especially, discontinuities become more serious for the 3-D mesh model with a non-atlas texture image. In this paper, we propose a new coding scheme to remove discontinuities in the texture coordinates by reallocating texture segments according to a coding order. Experiment results show that the proposed coding scheme outperforms the MPEG-4 3DMC standard in terms of compression efficiency. The proposed scheme not only overcome the discontinuity problem by regenerating a texture image, but also improve coding efficiency of texture coordinate compression.

  • PDF

마그네슘 합금의 고온 평면변형 압축에서 Pb 첨가에 따른 미세조직 및 집합조직 변화 (Effects of Pb Aaddition on Microstructur and Texture in High Temperature Plane Strain Compression of Magnesium Alloys)

  • 지예빈;윤지민;김권후
    • 열처리공학회지
    • /
    • 제37권1호
    • /
    • pp.23-28
    • /
    • 2024
  • As global warming accelerates, the transportation industry is increasing the use of lightweight materials with the goal of reducing carbon emissions. Magnesium is a suitable material, but its poor formability limits its use, so research is needed to improve it. Rare-earth elements are known to effectively control texture development, but their high cost limits commercial. In this study, changes in microstructure and texture were investigated by adding Pb, which is expected to have a similar effect as rare-earth elements. The material used is Mg-15wt%Pb alloy. Initial specimens were obtained by rolling at 773 K to a rolling reduction of 25% and heat treatment. Afterwards, plane strain compression was performed at 723 K with a strain rate of 5×10-2s-1 and a strain of -0.4 to -1.0. As a result, recrystallized grains were formed within the microstructure, and the main component of the texture changed from (0,0) to (30,26). The maximum axial density was initially 10.01, but decreased to 4.23 after compression.

고온변형 중의 AZ80 마그네슘 합금의 미세조직 형성 거동에 미치는 변형속도의 영향 (Effect of Strain Rate on Microstructure Formation Behaviors of AZ80 Magnesium Alloy During High-temperature Deformation)

  • 박민수;김권후
    • 열처리공학회지
    • /
    • 제33권4호
    • /
    • pp.180-184
    • /
    • 2020
  • The crystallographic texture plays an important role in both the plastic deformation and the macroscopic anisotropy of magnesium alloys. In previous study for AZ80 magnesium alloy, it was found that the main texture components of the textures vary with the deformation conditions at high temperatures. Also, the basal texture was formed at stress of more than 15-20 MPa and the non-basal texture was formed at stress of less than 15-20 MPa. Therefore, in this study, uniaxial compression deformation of AZ80 magnesium alloy was carried out at high temperature (stress of 15-20 MPa). The uniaxial compression deformation is performed at temperature of 723 K and strain rate 3.0 × 10-3s-1, with a strain range of between -0.4 and -1.3. Texture measurement was carried out on the compression planes by the Schulz reflection method using nickel filtered Cu Kα radiation. EBSD measurement was also conducted in order to observe spatial distribution of orientation. As a result of high temperature deformation, the main component of texture and its development vary depending on deformation condition of this study.

절단시험과 압착시험에 의한 배추잎의 조직감 측정 비교 (Comparison of Cutting and Compression Tests for the Texture Measurement of Chinese Cabbage Leaves)

  • 이철호;황인주
    • 한국식품과학회지
    • /
    • 제20권6호
    • /
    • pp.749-754
    • /
    • 1988
  • 김장용 배추잎의 조직감 평가를 위하여 절단시험 및 압착시험에 의한 기계적 측정을 시도하였으며 관능검사 결과와 비교하였다. 배추잎의 절단강도는 소금절임이나 가열데침에 의하여 증가하였으며 15% 식염용액에서 5시간 절임으로써 최대치에 도달하였다. 압착시험에서 얻은 압착강도와 회복높이는 가열데침이나 소금절임에 의하셔 감소되었으며 파열점은 소실되었나. 생배추를 $CaCl_2$ 용액에 처리할 경우 절단강도, 압착강도, 파열강도가 모두 증가하였으나 절임배추나 가열데침한 배추에서는 $Ca^{++}$의 이러한 영향이 나타나지 않았다. 배추잎의 절단 장도는 절임배추의 견고성과 씹힘성을 나타내는 지표로 사용될 수 있을 것으로 판단되었다. 압착강도는 파열강도는 가열데침에 의한 배추잎의 조직감 변화를 나타낼 수 있었으나 소금절임한 배추의 견고성이나 씹힘성 지표로는 사용될 수 없었다.

  • PDF

쌀밥의 조직감에 대한 기기적 측정값과 관능적 측정값의 상관관계 연구 (Correlation between Instrumental Parameter and Sensory Parameter in the Texture of Cooked Rice)

  • 최원석
    • 한국식품영양학회지
    • /
    • 제29권5호
    • /
    • pp.605-609
    • /
    • 2016
  • This study aimed to find the optimum instrumental test conditions for the Texture Profile Analysis (TPA) of cooked rice in order to predict the sensory texture attributes (hardness, adhesiveness, chewiness). Sensory evaluation was performed for three kinds of instant cooked rice with university students in their twenties and the results of the sensory evaluation were compared to instrumental TPA patterns. Using partial least squares regression, the instrumental TPA results at a cross-head speed of 1.0 mm/sec and a compression ratio of 70% proved to be an excellent predictor of the sensory attributes of hardness ($R^2=0.99$) and chewiness ($R^2=0.99$). The results at a cross-head speed of 0.5 mm/sec and compression ratio of 30% provided an excellent model for the prediction of sensory adhesiveness ($R^2=0.83$). In this experimental range, sensory hardness and chewiness showed a high correlation with instrumental TPA parameters (hardness, cohesiveness, adhesiveness, springiness, chewiness) with a high cross-head speed and compression ratio, while sensory adhesiveness showed a high correlation with the TPA parameters with a low cross-head speed and compression ratio.