• Title/Summary/Keyword: Texture Image Segmentation

Search Result 143, Processing Time 0.031 seconds

Depth-based Correction of Side Scan Sonal Image Data and Segmentation for Seafloor Classification (수심을 고려한 사이드 스캔 소나 자료의 보정 및 해저면 분류를 위한 영상분할)

  • 서상일;김학일;이광훈;김대철
    • Korean Journal of Remote Sensing
    • /
    • v.13 no.2
    • /
    • pp.133-150
    • /
    • 1997
  • The purpose of this paper is to develop an algorithm of classification and interpretation of seafloor based on side scan sonar data. The algorithm consists of mosaicking of sonar data using navigation data, correction and compensation of the acouctic amplitude data considering the charateristics of the side scan sonar system, and segmentation of the seafloor using digital image processing techniques. The correction and compensation process is essential because there is usually difference in acoustic amplitudes from the same distance of the port-side and the starboard-side and the amplitudes become attenuated as the distance is increasing. In this paper, proposed is an algorithm of compensating the side scan sonar data, and its result is compared with the mosaicking result without any compensation. The algorithm considers the amplitude characteristics according to the tow-fish's depth as well as the attenuation trend of the side scan sonar along the beam positions. This paper also proposes an image segmentation algorithm based on the texture, where the criterion is the maximum occurence related with gray level. The preliminary experiment has been carried out with the side scan sonar data and its result is demonstrated.

Block Classification of Document Images by Block Attributes and Texture Features (블록의 속성과 질감특징을 이용한 문서영상의 블록분류)

  • Jang, Young-Nae;Kim, Joong-Soo;Lee, Cheol-Hee
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.7
    • /
    • pp.856-868
    • /
    • 2007
  • We propose an effective method for block classification in a document image. The gray level document image is converted to the binary image for a block segmentation. This binary image would be smoothed to find the locations and sizes of each block. And especially during this smoothing, the inner block heights of each block are obtained. The gray level image is divided to several blocks by these location informations. The SGLDM(spatial gray level dependence matrices) are made using the each gray-level document block and the seven second-order statistical texture features are extracted from the (0,1) direction's SGLDM which include the document attributes. Document image blocks are classified to two groups, text and non-text group, by the inner block height of the block at the nearest neighbor rule. The seven texture features(that were extracted from the SGLDM) are used for the five detail categories of small font, large font, table, graphic and photo blocks. These document blocks are available not only for structure analysis of document recognition but also the various applied area.

  • PDF

Object oriented classification using Landsat images

  • Yoon, Geun-Won;Cho, Seong-Ik;Jeong, Soo;Park, Jong-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.204-206
    • /
    • 2003
  • In order to utilize remote sensed images effectively, a lot of image classification methods are suggested for many years. But, the accuracy of traditional methods based on pixel-based classification is not high in general. In this study, object oriented classification based on image segmentation is used to classify Landsat images. A necessary prerequisite for object oriented image classification is successful image segmentation. Object oriented image classification, which is based on fuzzy logic, allows the integration of a broad spectrum of different object features, such as spectral values , shape and texture. Landsat images are divided into urban, agriculture, forest, grassland, wetland, barren and water in sochon-gun, Chungcheongnam-do using object oriented classification algorithms in this paper. Preliminary results will help to perform an automatic image classification in the future.

  • PDF

Segmented Video Coding Using Variable Block-Size Segmentation by Motion Vectors (움직임벡터에 의한 가변블럭영역화를 이용한 영역기반 동영상 부호화)

  • 이기헌;김준식;박래홍;이상욱;최종수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.4
    • /
    • pp.62-76
    • /
    • 1994
  • In this paper, a segmentation-based coding technique as applied to video sequences is proposed. A proposed method separates an image into contour and texture parts, then the visually-sensitive contour part is represented by chain codes and the visually-insensitive texture part is reconstructed by a representative motion vector of a region and mean of the segmented frame difference. It uses a change detector to find moving areas and adopts variable blocks to represent different motions correctly. For better quality of reconstructed images, the displaced frame difference between the original image and the motion compensated image reconstructed by the representative motion vector is segmented. Computer simulation with several video sequences shows that the proposed method gives better performance than the conventional ones in terms of the peak signal to noise ratio(PSNR) and compression ration.

  • PDF

Very Low Bit Rate Video Image Coder Using the Fractals

  • Kim, Yong-Hon;Jang, Jong-Whan;Jeong, Jae-Gil;Park, Doo-Yeong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.2E
    • /
    • pp.85-91
    • /
    • 1996
  • New very low bit rate segmentation video image coding technique is proposed by segmenting image into textually homogeneous regions. Regions are classified into one of three perceptually distinct texture classes(perceived constant intensity, smooth texture, and rough texture) using the Human Visual System(HVS) and the fractals. To design very low bit rate video image coder, it is very important to determine the best block size for estimation the fractal dimension and the thresholding of the fractal dimension for each texture class. Good quality reconstructed images are obtained with about 0.10 to 0.21 bit per pixel(bpp) for many different types of imagery.

  • PDF

CRF-Based Figure/Ground Segmentation with Pixel-Level Sparse Coding and Neighborhood Interactions

  • Zhang, Lihe;Piao, Yongri
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.3
    • /
    • pp.205-214
    • /
    • 2015
  • In this paper, we propose a new approach to learning a discriminative model for figure/ground segmentation by incorporating the bag-of-features and conditional random field (CRF) techniques. We advocate the use of image patches instead of superpixels as the basic processing unit. The latter has a homogeneous appearance and adheres to object boundaries, while an image patch often contains more discriminative information (e.g., local image structure) to distinguish its categories. We use pixel-level sparse coding to represent an image patch. With the proposed feature representation, the unary classifier achieves a considerable binary segmentation performance. Further, we integrate unary and pairwise potentials into the CRF model to refine the segmentation results. The pairwise potentials include color and texture potentials with neighborhood interactions, and an edge potential. High segmentation accuracy is demonstrated on three benchmark datasets: the Weizmann horse dataset, the VOC2006 cow dataset, and the MSRC multiclass dataset. Extensive experiments show that the proposed approach performs favorably against the state-of-the-art approaches.

Tongue Image Segmentation Using CNN and Various Image Augmentation Techniques (콘볼루션 신경망(CNN)과 다양한 이미지 증강기법을 이용한 혀 영역 분할)

  • Ahn, Ilkoo;Bae, Kwang-Ho;Lee, Siwoo
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.201-210
    • /
    • 2021
  • In Korean medicine, tongue diagnosis is one of the important diagnostic methods for diagnosing abnormalities in the body. Representative features that are used in the tongue diagnosis include color, shape, texture, cracks, and tooth marks. When diagnosing a patient through these features, the diagnosis criteria may be different for each oriental medical doctor, and even the same person may have different diagnosis results depending on time and work environment. In order to overcome this problem, recent studies to automate and standardize tongue diagnosis using machine learning are continuing and the basic process of such a machine learning-based tongue diagnosis system is tongue segmentation. In this paper, image data is augmented based on the main tongue features, and backbones of various famous deep learning architecture models are used for automatic tongue segmentation. The experimental results show that the proposed augmentation technique improves the accuracy of tongue segmentation, and that automatic tongue segmentation can be performed with a high accuracy of 99.12%.

A Rotation Invariant Image Retrieval with Local Features

  • You, Hee-Jun;Shin, Dae-Kyu;Kim, Dong-Hoon;Kim, Hyun-Sool;Park, Sang-Hui
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.3
    • /
    • pp.332-338
    • /
    • 2003
  • Content-based image retrieval is the research of images from database, that are visually similar to given image examples. Gabor functions and Gabor filters are regarded as excellent methods for feature extraction and texture segmentation. However, they have a disadvantage not to perform well in case of a rotated image because of its direction-oriented filter. This paper proposes a method of extracting local texture features from blocks with central interest points detected in an image and a rotation invariant Gabor wavelet filter. We also propose a method of comparing pattern histograms of features classified by VQ (Vector Quantization) among images.

Region-based Content Retrieval Algorithm Using Image Segmentation (영상 분할을 이용한 영역기반 내용 검색 알고리즘)

  • Rhee, Kang-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.5
    • /
    • pp.1-11
    • /
    • 2007
  • As the availability of an image information has been significantly increasing, necessity of system that can manage an image information is increasing. Accordingly, we proposed the region-based content retrieval(CBIR) algorithm based on an efficient combination of an image segmentation, an image texture, a color feature and an image's shape and position information. As a color feature, a HSI color histogram is chosen which is known to measure spatial of colors well. We used active contour and CWT(complex wavelet transform) to perform an image segmentation and extracting an image texture. And shape and position information are obtained using Hu invariant moments in the luminance of HSI model. For efficient similarity computation, the extracted features(color histogram, Hu invariant moments, and complex wavelet transform) are combined and then precision and recall are measured. As a experimental result using DB that was supported by www.freefoto.com. the proposed image retrieval engine have 94.8% precision, 82.7% recall and can apply successfully image retrieval system.

Cotent-based Image Retrieving Using Color Histogram and Color Texture (컬러 히스토그램과 컬러 텍스처를 이용한 내용기반 영상 검색 기법)

  • Lee, Hyung-Goo;Yun, Il-Dong
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.9
    • /
    • pp.76-90
    • /
    • 1999
  • In this paper, a color image retrieval algorithm is proposed based on color histogram and color texture. The representative color vectors of a color image are made from k-means clustering of its color histogram, and color texture is generated by centering around the color of pixels with its color vector. Thus the color texture means texture properties emphasized by its color histogram, and it is analyzed by Gaussian Markov Random Field (GMRF) model. The proposed algorithm can work efficiently because it does not require any low level image processing such as segmentation or edge detection, so it outperforms the traditional algorithms which use color histogram only or texture properties come from image intensity.

  • PDF