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ABSTRACT

New very low bit rate segmentation video image coding technique is proposed by segmenting image into textually homo­
geneous regions. Regions are classified into one of three perceptually distinct texture classes(perceived constant intensity, 
smooth texture, and rough texture) using the Human Visual System(HVS) and the fractals. To design very low bit rate 
video image coder, it is very important to determine the best block size for estimating the fractal dimension and the 
thresholding of the fractal dimension for each texture class. Good quality reconstructed images are obtained with about 0. 
10 to 0.21 bit per pixel(bpp) for many different types of imagery.

I. Introduction

Toward very low bit rate environment [9, 11], new im­
age compression techniques are strongly required for vari­
ous applications such as in the areas of digital video co­
decs for desktop multimedia computers, electronic pub­
lishing, and video teleconferencing etc. Symbolically 
based image compression technique which is a promising 
solution [2, 5, 7-8] employs properties of the HVS and 
tools of image analysis to achieve good image quality at 
very low bit rates. One approach to symbolically based im­
age compression techniques is segmentation based image 
compression. In segmentation based image compression, 
the image to be compressed is segmented, i.e. the pixels in 
the image are separated into regions having widely 
differing perceptual importance. The importance of a re­
gion corresponds to the amount of information it conveys 
to the viewer. Typically, the amount of local detail or 
high frequency content, is considered a reasonable meas­
ure of this importance ； however, this by itself is an inad­
equate measure for efficient very low bit rate image com­
pression [7]. It is also desirable to consider other signifi­
cant characteristics, such as texture and the global con­
text of the local region, in order to assess the local infor­
mation content. Certain regions are critical to our subjec­
tive evaluation of quality, and relatively small errors can 

perceptually have a major degrading effect on the overall 

reproduction quality. Such regions tend to dominate the 
viewer's attention and are intrinsically less compressible 
than background segments. Consequently, when the over­
all bit rate is low, a uniform allocation of bits across im­
age implies that the spatial distribution of perceptual 
degradation is highly nonuniform ； some regions have a 
starvation diet of bits, causing a significant degradation, 
while other regions have been coded with far more bits 
than needed for perceptually transparent quality.

In the proposed new technique, we overcome the tex­
ture representation problem and determine the best block 
size for estimating the fractal dimension and the thres­
holding of the fractal dimension. The segmentation tech­
nique we present segments image into texturally homo­
geneous regions with respect to the degree of percei ved 
roughness using the HVS and the fractals. After segmen­
tation, the image can be viewed as being composed of re­
gion boundaries and texturally homogeneous regions. As 
image coding system with high compression and good im­
age quality is achieved by developing an efficient coding 
technique for the region boundaries and the three textural 
classes. The proposed algorithm is applied to different 
types of imagery.

In section 2, determination of the best block size for es­
timating the fractal dimension and the thresholding of the 
fractal dimension is presented. In section 3, we describe 
the proposed texture image segmentation and the pro­
posed actual coding scheme. Finally, conclusions are pro­
vided in section 4.
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II. Determination of the best block size for 
estimating the fractal dimension (D) 
and the thresholding of D

In the proposed compression algorithm, an image is 
divided into blocks for the efficient implementation for 
the proposed coding system and D of each block is com­
puted. It is very important to choose the best block size 
in the image so that good estimates of D are obtained 
and good image quality can be maintained. When the 
block size is small, there may not be enough pixels to de­
scribe the texture within the block. For example, if the 
block is 1 X 1, there is only one pixel in the block and it is 
not possible to characterize its texture. When the block 
size is large, several different textures may be present 
within the block and the estimated D will not accurately 
represent the characteristics of the multiple textures. 
Another issue to be considered when choosing the block 
size is the computation requirements. The computation 
requirement for the large block is more expensive than 
the one for the small block. For example, consider the 
block sizes 8x8 and 16x16. The number of pix이s in the 
block size 16X16 is four times larger than the number in 
the block size 8X8. Therefore, the computation time to 
compute D in the larger block is more expensive. Con­
sidering the issues discussed above, we conclude that the 
smallest feasible block size is the best block alternative.

2.1 Fract히 dimension (D)
The definition of D is a set for which the Hausdorff- 

Besicovich dimension is strictly greater than the topologi­
cal dimension [1], We consider object X in an £-dimen- 
sional space. 7V(e) is the number of ^-dimensional sphere 
of diameter e needed to cover X, where E is an integer 
and the E-dimensional space is the minimum integer 
dimensional space among all possible integer dimensional 
spaces which can envelop X, Thus, if Me) is given by

Me) = K・(』)气 as e->0, (1)
E

where K is a constant and X has HausdorfT dimension D. 
If D is fractional, D is also called the fractal dimension. 
For fractal objects, D is independent of e [1].

If D is to be used to characterize the texture in an im­
age, we need a method for estimating D from the given 
dataset. Many different estimators have been proposed; 
box counting [1], yardstick |3], and blanket [10]. In our 
case, a blanket method is adopted since it is computation­
ally efficient. The blanket method is described in detail in 

paper [10]. A brief explanation of the procedure for esti­
mating D is given here. All points in the three-dimension­
al space at distance e from the surface are considered, 
covering the surface with a blanket of thickness 2e. The 
surface area A(e) is then the volume f(E)occupied by the 
blanket divided by 2& The area A(e) is given by

/(Q = —W =e2 - MG = K. E2-p (2)
2e

where K is a constant.
From a theoretical viewpoint, if a surface is a perfect 

fractal surface, then D will remain constant over all ran­
ges of scale e. In practice, there are scale range limit­
ations of D due to limitations in textural images. For 
example, the resolution limit of the image system sets a 
lower limit on the fractal scaling behavior. An upper limit 
may be set by the structure being examined. Thus, a real 
surface will be fractal over some range of scales rather 
than over all scales. These limiting scales can be expressed 
as 니pper(£max) and lower cutoff (emin) scales.

To compute D, we apply the log function to both sides 
of Eq.(2). A least square linear regression is applied to fit 
a strai아】t line to the plot of log/l(E)vs. log(e) for £min 
and Emax. The fractal dimension D is equal to 2 minus the 
slope of the straight line.

log^(e)-(2-D) log(£)+^ (3)

From Eq. (3), we can deduce a procedure to estimate D 
of an image surface using a least-square linear regression.

2.2 Experimental res니Its for determining the best 
block size for estimatingD

To determine the best block size in terms of the fractal 
dimension (D), each three 30x30 s나bimages of two dif­
ferent types of test images with 256x256 pixels with 256 
gray levels given in Fig. 1 are taken. The one in Fig, 1(a) 
is a head and shoulder image with little texture variation. 
This image is typical of video teleconferencing applicat­
ions. The other in Fig. 1(b) is a natural outdoor image 
with highly textured areas. To achieve the segmentation 
efficiently, three subimages of Miss USA in Fig. 1(a) on 
the top, middle, and bottom belong to class I, class U, 
and class HI respectively. Three subimages of House in 
Fig. 1(b) on the right and top, bottom, and left and top 
belong lo class I, class D, and class ID respectively.

A plot of D versus block size is given in Fig. 2. The 
curves with a diamond symboKO), a cross symbol(+), 
and a square symboKO) correspond to class I, class II,
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(a) Miss USA (b) House

Fig 1. Two test images of Miss USA and House with each three 
30x30 subimages. Three subimages of Miss USA on the 
top, middle, and bottom belong to class T , class II, 
class DI respectively,

and class DI respectively. We investigate the variation of 
D versus the block size for each class. Block size is varied 
from 2 to 30 and is increased from the left, top corner. 
Curves of D versus block size are given in Fig. 2. In each 
plot, the x-axis represents the block size and the y-axis D. 
D corresponding to ◊ has almost a constant value, 2.0, 
for blocksize 2, 30. That is, there exists only a single
texture of class I in each block. The shape of the curve 
corresponding to + is quite variable for blocks between 
(2,…，7) and (19, 30) but is nearly constant for the

middle block size (8, 18). The reason for variability in
the smaller 2, 7 blocks is the small number of pixels to
characterize the texture. In larger 19, 30 blocks more
than one texture is present. The middle 8, 18 blocks
have only one texture and provide the least variable esti­
mate of D. Note, 30x30 subimage at the bottom of Fig. 
1(a) has three different textures；the neck and two swea­
ters. In general, when the block size is large, there is more 
likelihood that several textures will be in the block, and 
the value of D will not remain constant. The shape of the 
curve corresponding to □ looks similar to that of class 
DI. At the small block sizes, there are too few pixels to 
estimate the texture and at the large block size, m니tiple 
textures are present in the block. The curve is nearly con­
stant for middle (8, 18) block sizes. In summary, the
larger block sizes may not give good estimates of D be­
cause they contain several textures and the smaller block 
may not contain enough pixels to characterize the texture.

Through extensive experimentation, we have found that 
block sizes of 8x8 up to 14x 14 have 시most a constant 
value. Thus these blocks meaningfully represent the textu-
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Fig 2. Plot of D versus block size in (a) Miss USA and (b) 
House. The curves with a diamond symbol (◊), a cross 
symbol (+), and a square symbol (□) correspond to 
class I, class H , and class ID respectively.

ral characteristics of a region. The means of D's and the 
standard deviations of D for the blocks in each class for 
the test images as a result of these simulations are given 
in table 1 and table 2,
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Table 1. Statistics of variation of D in Miss USA

class block size mean of D standard deviation
class I 2 乂 2 to 28 X 28 2.000605 0.000015
class II 8X8 to 19X 19 2.271142 0.000154
class ID 8 X 8 to 14X 14 2.665640 0.000075

Table 2. Statistics of variation of D in House

class block size mean of D standard deviation
class I 2 X 2 to 28 X 28 2.000000 0.000000
class II 8X8 to 19X 19 2.296040 0.000094
class DI 8X8 to 14X 14 2.650985 0.000172

We choose an 8X8 block size for the block-by-block 
segmentation algorithm in the following section since the 
smaller block size reduces the computation and storage 
requirement and as will be seen later is consistent with 
giving the best image quality. Furthermore, by comparing 
curves in the plot, curves on □, +, and ◊ symbols are 
the top, middle, and bottom respectively for the mid sized 
blocks from 8X8 to 14X14 rougher texture produces 
higher fractal dimension (£)).

2.3 Experimental res니Its for determining the thres- 
h이ding of D

Five 8X8 subimages belonging to each class in each 
test image with 256x256 pixels, and 256 gray levels are 
chosen. In this experiment, 8x8 block size is used for 
each subimage because the block size is the smallest one 
to characterize meaningfully the texture of a region as 
discussed in section 2.2. For Miss USA, 5 subimages in 
the background and sweater are chosen to represent class
I, 5 subimages in the neck, cheeks and shoulder for class
II, and 5 subimages in the hair, eyes, mouth, and nose 
for class DI. For House, 5 subimages in the sky and con­
crete wall are chosen for class 1, 5 subimages in the lawn 
and car for class H, and 5 subimages in the trees for 
class HI.

A plot of D of the fifteen subimages for each class is 
given in Figure 3. In the plot, the x-axis represents D and 
the y-axis the number of blocks at that D. The curve with 
◊ corresponds to class I, the curve with + to class II, 

and the curve with □ to class JU. D belonging to class T 
are distributed around D = 2.0. The curves of D belonging 
to class II and class HI are approximately bell-shaped ar­
ound their means respectively. There are gaps between the 
curves for each class. Through these results, the value of 
Di should not be greater than the minimum Z)nmin of D 
belonging to class 口. The value of D2 should be greater 
나lan the mean of D of class II. We propose £)[ = Q i max/2

and Da = 시2, where £>imax and D^mean are the maxi­
mum D belonging to class I and the mean D belonging 
to class II respectively. Therefore regions belonging to 
class I (perceived constant intensity) have D less than 
D\. The second class (smooth texture) contains regions 
with D between D\ and Di. The third class (rough tex­
ture) contains regions with D greater than D2.

Fig 3. A plot of D of the subimages for each class. The x-axis 
represents D and the y-axis the number of blocks at that 
D. The curves with ◊，七□ correspond to class T, 
class II, and class IH respectively.

HI. The proposed texture image segmentation

The goal of the image segmentation process is to decom­
pose an image into texturally homogeneous regions with 
respect to the degree of roughness as perceived by the 
HVS. Textural regions are 이assified into three classes； 
class I, class U, and class HI. For example, the back­
ground in a head and shoulder image or the sky in a 
natural image is considered as class I, the face or the 
shoulder is considered as class H, and the trees and the 
bushes in a natural image are considered as class DJ. To 
extract texture information for accomplishing textural­
based image segmentation, the fractal dimension (D), 
mean, and just noticeable difference (JND) are used in 
the segmentation algorithm. The segmentation algorithm 
is based on a region growing technique |4]. A unique of 
feature of the region growing process used in this re­
search is that it is directed by the texture feature distance 
between image blocks. The region growing is achieved 
through a merging test condition between texturally hom­
ogeneous neighboring blocks. If the condition for merg­
ing is satisfied, an observing block can be merged into a 
neighbor block. Otherwise, a new region is declared.

For our segmentation, we have used a centroid linkage 
region growing method because it is guaranteed to pro­
duce disjoint segments with close boundaries and provides 
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a sequential algorithm for growing region. The centroid 
linkage region growing method is illustrated in paper [4]. 
The texture features are used 나le mean, JND, and the 
class type based on D of the image block.

Incorporating the HVS and the fractal model, the 
proposed texture-based image segmentation algorithm for 
image coder is defined as follows.

Step 1)Divide the image into NRXNC blocks (NR and 
NC are the numbers of row and column blocks, respect­
ively).

Step 2) Calculate the feature set: the mean and the class 
type for each block and the JND lookup table.

Step 3) Calculate the distance between an observing block 
and its 4-connected neighboring blocks. The distance is 
given by

KOB) < Dy, C(OB) = C(NB)

I M(OB) - I < JNDtOB, NB)
or

0 if
Di M KOB)<D2, C(OB)=C(NB)

D(OB, NB)= or
F(OB) 그 D2, C(OB)= C(NB)

1 otherwise

where is D of an observing block. C(OB) and C 
(NB) are the class types of an observing block and its 
neighboring block respectively. M(OB) and M(NB) are 
the means for an observing block and its neighboring 
block respectively. JND(OB, NB) is JND between an ob­
serving block and its neighboring block.
Step 4) If there is a neighboring block with distance 0, 
then merge the observing block into it ； else declare a new 
region. If there are more than two good neighboring 
blocks, merge the observing block into a neighboring 
block whose mean value is closest to the mean value of 
the observing block.

Step 5) Repeat step 3 to step 4 until all blocks are seg­
mented and stop.

The proposed texture segmentation-based image coder 
system for the very low bit rate is given in detail in paper 
【기, The number of segments and the number of bits 
representing the textures of the segments are directly pro­
portional to the bit rate of the coded image. Thus, the 
main purpose of 나)e preprocessor which is the first stage 
of the proposed transmitter is to alter the image in such a 
way that fewer segments and textures are proposed by the 
segmenter, but without degrading the visual quality of the 
segmented image. After preprocessing, the image data is 

segmented into texturally homogeneous regions with re­
spect to the decree of roughness as perceived by the HVS. 
The segmentation is accomplished by thresholding the 
fractal dimension discussed in section 2.3. The last stage 
in the transmitter is the mixed encoding of the segments 
of each class and their boundaries. For boundary coding, 
accurate representation of the boundary is necessary to 
describe the location of the region boundary because of 
the HVS sensitivity of the edges. We choose an errorless 
coding scheme to represent the boundaries. A binary im­
age representing the boundaries is created. Then, the bi­
nary data is encoded using an adaptive arithmetic： code 
since it has been found to be superior to Huffman code, 
runlength code, and crack code. For regions which be­
long to perceived constant intensity, only the mean inten­
sity values need be transmitted to describe the textures of 
the regions. In this case, lossy compression has already 

taken place since we are approximating each region tex­
ture with a constant value. We do not wish to introduce 
any further compression so a lossless adaptive arithmetic 
code is again employed to achieve further compression. 
Since a mean intensity requires 8 bits, the mean values 
are perceived constant regions. Regions belonging to 
smooth texture and rough texture are not directly en­
coded. To get higher compression, these regions are mo­
deled first using the 1-D first order polynomial function. 
The coefficients of the polynomial functions are encoded 
because the variance of the coefficients is less than that of 
the original data. An adaptive arithmetic code is used to 
encode the coefficients.

To compute the lot지 number of bits required to trans­
mit an image, the three numbers of bits calculated for the 
boundary, constant region, and smooth/rough texture are 
added. The bit rate is the sum of the number of bits div­
ided by the total bits of an image. The bit rate, BR is 
given by

SP +CP +BR
BR =------------------------ (3)

256X256 = 65536

where SP is the number of bits required for encoding of 
the boundaries, CP is the number of required for encod­
ing of the constant regions, and BP is the number of re­
quired for encoding of the smooth and rough texture 
regions.

IV. Conclusions

Decoded images are obtained with D\ =2.033, D2 - 2. 
371, and block size 8X8 for the proposed texture segmen-
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(a) the decoded Miss USA (b)the decoded House

Fig 4. The decoded images of the two test images using D\ = 2. 
033, Z)2 = 2.371, and the best block size 8X8. The com­
pression rates of Miss USA and House are 0.11 and 0.21 
respccliv 이 y.

tation compression technique. Each image consists of $ 
256x256 pixels with 256 gray levels. The images are 
viewed on a 20" SUN monitor with 256 possible gray 
levels. The monitor was calibrated so ihat there was a lin­

ear relationship between gray level numeric value and out­
put luminance. The compression ratios for the two test 
images Miss USA and House are 0.11 and 0.21 bpp re­
spectively. The decoded images for the two test images 
are given in Fig. 4. The CR(compression ratio)/SNR is 
given in the table 3. It shows that the proposed texture 
segmentation-based image coder performs good in terms 
of SNR.

Table 3. The table of CR/SNR for two test images. CR stands 
for compression ratio.

Image
CR Miss USA House

15.5
14.8
12.0
9.7
8.5
6.9

8
10
20
40
80
100

27.3
26.4
25.9
21.2
18.1
15.2

These results indicate that, usin흥 the new texture-based 
segmentation ima응e compression system, compression rat­
ios in the neighborhood of 0.11 to 0.21 bpp are attainable 
with good image quality for the various imagery in very 

low bit rate.
One advantage of the proposed block by block method 

is that it allows more readily for compression ratio and 
image quality trade-offs. By varying parameter, the com­
pression ratios can be easily controlled.
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