• Title/Summary/Keyword: Texture Feature Analysis

Search Result 116, Processing Time 0.026 seconds

Evaluation of Volumetric Texture Features for Computerized Cell Nuclei Grading

  • Kim, Tae-Yun;Choi, Hyun-Ju;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.12
    • /
    • pp.1635-1648
    • /
    • 2008
  • The extraction of important features in cancer cell image analysis is a key process in grading renal cell carcinoma. In this study, we applied three-dimensional (3D) texture feature extraction methods to cell nuclei images and evaluated the validity of them for computerized cell nuclei grading. Individual images of 2,423 cell nuclei were extracted from 80 renal cell carcinomas (RCCs) using confocal laser scanning microscopy (CLSM). First, we applied the 3D texture mapping method to render the volume of entire tissue sections. Then, we determined the chromatin texture quantitatively by calculating 3D gray-level co-occurrence matrices (3D GLCM) and 3D run length matrices (3D GLRLM). Finally, to demonstrate the suitability of 3D texture features for grading, we performed a discriminant analysis. In addition, we conducted a principal component analysis to obtain optimized texture features. Automatic grading of cell nuclei using 3D texture features had an accuracy of 78.30%. Combining 3D textural and 3D morphological features improved the accuracy to 82.19%. As a comparative study, we also performed a stepwise feature selection. Using the 4 optimized features, we could obtain more improved accuracy of 84.32%. Three dimensional texture features have potential for use as fundamental elements in developing a new nuclear grading system with accurate diagnosis and predicting prognosis.

  • PDF

Use of Crown Feature Analysis to Separate the Two Pine Species in QuickBird Imagery

  • Kim, Cheon
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.3
    • /
    • pp.267-272
    • /
    • 2008
  • Tree species-specific estimates with spacebome high-resolution imagery improve estimation of forest biomass which is needed to predict the long term planning for the sustainable forest management(SFM). This paper is a contribution to develop crown distinguishing coniferous species, Pinus densiflora and Pinus koraiensis, from QuickBird imagery. The proposed feature analysis derived from shape parameters and first and second-order statistical texture features of the same test area were compared for the two species separation and delineation. As expected, initial studies have shown that both formfactor and compactness shape parameters provided the successful differentiating method between the pine species within the compartment for single crown identification from spaceborne high resolution imagery. Another result revealed that the selected texture parameters - the mean, variance, angular second moment(ASM) - in the infrared band image could produce good subset combination of texture features for representing detailed tree crown outline.

Region Division for Large-scale Image Retrieval

  • Rao, Yunbo;Liu, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.5197-5218
    • /
    • 2019
  • Large-scale retrieval algorithm is problem for visual analyses applications, along its research track. In this paper, we propose a high-efficiency region division-based image retrieve approaches, which fuse low-level local color histogram feature and texture feature. A novel image region division is proposed to roughly mimic the location distribution of image color and deal with the color histogram failing to describe spatial information. Furthermore, for optimizing our region division retrieval method, an image descriptor combining local color histogram and Gabor texture features with reduced feature dimensions are developed. Moreover, we propose an extended Canberra distance method for images similarity measure to increase the fault-tolerant ability of the whole large-scale image retrieval. Extensive experimental results on several benchmark image retrieval databases validate the superiority of the proposed approaches over many recently proposed color-histogram-based and texture-feature-based algorithms.

Texture Analysis for Classifying Normal Tissue, Benign and Malignant Tumors from Breast Ultrasound Image

  • Eom, Sang-Hee;Ye, Soo-Young
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.1
    • /
    • pp.58-64
    • /
    • 2022
  • Breast ultrasonic reading is critical as a primary screening test for the early diagnosis of breast cancer. However, breast ultrasound examinations show significant differences in diagnosis based on the difference in image quality according to the ultrasonic equipment, experience, and proficiency of the examiner. Accordingly, studies are being actively conducted to analyze the texture characteristics of normal breast tissue, positive tumors, and malignant tumors using breast ultrasonography and to use them for computer-assisted diagnosis. In this study, breast ultrasonography was conducted to select 247 ultrasound images of 71 normal breast tissues, 87 fibroadenomas among benign tumors, and 89 malignant tumors. The selected images were calculated using a statistical method with 21 feature parameters extracted using the gray level co-occurrence matrix algorithm, and classified as normal breast tissue, benign tumor, and malignancy. In addition, we proposed five feature parameters that are available for computer-aided diagnosis of breast cancer classification. The average classification rate for normal breast tissue, benign tumors, and malignant tumors, using this feature parameter, was 82.8%.

Texture Classification Using Wavelet-Domain BDIP and BVLC Features With WPCA Classifier (웨이브렛 영역의 BDIP 및 BVLC 특징과 WPCA 분류기를 이용한 질감 분류)

  • Kim, Nam-Chul;Kim, Mi-Hye;So, Hyun-Joo;Jang, Ick-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.2
    • /
    • pp.102-112
    • /
    • 2012
  • In this paper, we propose a texture classification using wavelet-domain BDIP (block difference of inverse probabilities) and BVLC (block variance of local correlation coefficients) features with WPCA (whitened principal component analysis) classifier. In the proposed method, the wavelet transform is first applied to a query image. The BDIP and BVLC operators are next applied to the wavelet subbands. Global moments for each subband of BDIP and BVLC are then computed and fused into a feature vector. In classification, the WPCA classifier, which is usually adopted in the face identification, searches the training feature vector most similar to the query feature vector. Experimental results show that the proposed method yields excellent texture classification with low feature dimension for test texture image DBs.

The Classification of Roughness fir Machined Surface Image using Neural Network (신경회로망을 이용한 가공면 영상의 거칠기 분류)

  • 사승윤
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.2
    • /
    • pp.144-150
    • /
    • 2000
  • Surface roughness is one of the most important parameters to estimate quality of products. As this reason so many studies were car-ried out through various attempts that were contact or non-contact using computer vision. Even through these efforts there were few good results in this research., however texture analysis making a important role to solve these problems in various fields including universe aviation living thing and fibers. In this study feature value of co-occurrence matrix was calculated by statistic method and roughness value of worked surface was classified, of it. Experiment was carried out using input vector of neural network with characteristic value of texture calculated from worked surface image. It's found that recognition rate of 74% was obtained when adapting texture features. In order to enhance recogni-tion rate combination type in characteristics value of texture was changed into input vector. As a result high recognition rate of 92.6% was obtained through these processes.

  • PDF

Analysis of Texture Features and Classifications for the Accurate Diagnosis of Prostate Cancer (전립선암의 정확한 진단을 위한 질감 특성 분석 및 등급 분류)

  • Kim, Cho-Hee;So, Jae-Hong;Park, Hyeon-Gyun;Madusanka, Nuwan;Deekshitha, Prakash;Bhattacharjee, Subrata;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.8
    • /
    • pp.832-843
    • /
    • 2019
  • Prostate cancer is a high-risk with a high incidence and is a disease that occurs only in men. Accurate diagnosis of cancer is necessary as the incidence of cancer patients is increasing. Prostate cancer is also a disease that is difficult to predict progress, so it is necessary to predict in advance through prognosis. Therefore, in this paper, grade classification is attempted based on texture feature extraction. There are two main methods of classification: Uses One-way Analysis of Variance (ANOVA) to determine whether texture features are significant values, compares them with all texture features and then uses only one classification i.e. Benign versus. The second method consisted of more detailed classifications without using ANOVA for better analysis between different grades. Results of both these methods are compared and analyzed through the machine learning models such as Support Vector Machine and K-Nearest Neighbor. The accuracy of Benign versus Grade 4&5 using the second method with the best results was 90.0 percentage.

Texture Analysis and Classification Using Wavelet Extension and Gray Level Co-occurrence Matrix for Defect Detection in Small Dimension Images

  • Agani, Nazori;Al-Attas, Syed Abd Rahman;Salleh, Sheikh Hussain Sheikh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.2059-2064
    • /
    • 2004
  • Texture analysis is an important role for automatic visual insfection. This paper presents an application of wavelet extension and Gray level co-occurrence matrix (GLCM) for detection of defect encountered in textured images. Texture characteristic in low quality images is not to easy task to perform caused by noise, low frequency and small dimension. In order to solve this problem, we have developed a procedure called wavelet image extension. Wavelet extension procedure is used to determine the frequency bands carrying the most information about the texture by decomposing images into multiple frequency bands and to form an image approximation with higher resolution. Thus, wavelet extension procedure offers the ability to robust feature extraction in images. Then the features are extracted from the co-occurrence matrices computed from the sub-bands which performed by partitioning the texture image into sub-window. In the detection part, Mahalanobis distance classifier is used to decide whether the test image is defective or non defective.

  • PDF

Performance Analysis of Feature Detection Methods for Topology-Based Feature Description (토폴로지 기반 특징 기술을 위한 특징 검출 방법의 성능 분석)

  • Park, Han-Hoon;Moon, Kwang-Seok
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.2
    • /
    • pp.44-49
    • /
    • 2015
  • When the scene has less texture or when camera pose largely changes, the existing texture-based feature tracking methods are not reliable. Topology-based feature description methods, which use the geometric relationship between features such as LLAH, is a good alternative. However, they require feature detection methods with high performance. As a basic study on developing an effective feature detection method for topology-based feature description, this paper aims at examining their applicability to topology-based feature description by analyzing the repeatability of several feature detection methods that are included in the OpenCV library. Experimental results show that FAST outperforms the others.

Multiple Texture Objects Extraction with Self-organizing Optimal Gabor-filter (자기조직형 최적 가버필터에 의한 다중 텍스쳐 오브젝트 추출)

  • Lee, Woo-Beom;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.10B no.3
    • /
    • pp.311-320
    • /
    • 2003
  • The Optimal filter yielding optimal texture feature separation is a most effective technique for extracting the texture objects from multiple textures images. But, most optimal filter design approaches are restricted to the issue of supervised problems. No full-unsupervised method is based on the recognition of texture objects in image. We propose a novel approach that uses unsupervised learning schemes for efficient texture image analysis, and the band-pass feature of Gabor-filter is used for the optimal filter design. In our approach, the self-organizing neural network for multiple texture image identification is based on block-based clustering. The optimal frequency of Gabor-filter is turned to the optimal frequency of the distinct texture in frequency domain by analyzing the spatial frequency. In order to show the performance of the designed filters, after we have attempted to build a various texture images. The texture objects extraction is achieved by using the designed Gabor-filter. Our experimental results show that the performance of the system is very successful.