Abstract
When the scene has less texture or when camera pose largely changes, the existing texture-based feature tracking methods are not reliable. Topology-based feature description methods, which use the geometric relationship between features such as LLAH, is a good alternative. However, they require feature detection methods with high performance. As a basic study on developing an effective feature detection method for topology-based feature description, this paper aims at examining their applicability to topology-based feature description by analyzing the repeatability of several feature detection methods that are included in the OpenCV library. Experimental results show that FAST outperforms the others.
텍스처가 부족한 장면이나 카메라 포즈 변화가 클 경우, 기존의 텍스처 기반의 특징 추적 방법의 신뢰도는 크게 떨어진다. LLAH와 같은 특징 사이의 기하 정보를 활용하는 토폴로지 기반 특징 기술 방법이 좋은 대안이 될 수 있으나, 특징 검출방법의 성능에 크게 영향을 받는다. 본 논문에서는 토폴로지 기반 특징 기술을 위한 효과적인 특징 검출 방법을 마련하기 위한 기초 연구로, OpenCV 라이브러리에서 제공되는 특징 검출 방법들의 반복성(repeatability) 분석을 통해 토폴로지 기반 특징 기술에의 적용 가능성을 살펴본다. 실험을 통해, FAST의 성능이 가장 우수함을 확인하였다.