• Title/Summary/Keyword: Texture Complexity

Search Result 84, Processing Time 0.022 seconds

Near-lossless Coding of Multiview Texture and Depth Information for Graphics Applications (그래픽스 응용을 위한 다시점 텍스처 및 깊이 정보의 근접 무손실 부호화)

  • Yoon, Seung-Uk;Ho, Yo-Sung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.1
    • /
    • pp.41-48
    • /
    • 2009
  • This Paper introduces representation and coding schemes of multiview texture and depth data for complex three-dimensional scenes. We represent input color and depth images using compressed texture and depth map pairs. The proposed X-codec encodes them further to increase compression ratio in a near-lossless way. Our system resolves two problems. First, rendering time and output visual quality depend on input image resolutions rather than scene complexity since a depth image-based rendering techniques is used. Second, the random access problem of conventional image-based rendering could be effectively solved using our image block-based compression schemes. From experimental results, the proposed approach is useful to graphics applications because it provides multiview rendering, selective decoding, and scene manipulation functionalities.

Retroangular Flap for Midface Reconstruction (역행안각동맥 피판을 이용한 중안면부 결손의 재건)

  • Kang, Nak Heon;Song, Seung Han;Lee, Seung Ryul;Oh, Sang Ha;Seo, Young Joon
    • Archives of Plastic Surgery
    • /
    • v.33 no.5
    • /
    • pp.531-535
    • /
    • 2006
  • Purpose: To report our experience of retro-angular flap for reconstruction of the midface defect. The midface, including nose, lower eyelid, and intercanthal area, is the very prominent area of face. Also midface is more vulnerable to trauma and skin cancer and defect of mid face of highly perceptible. Reconstruction of mid face is difficult because of complexity of anatomy and functions. Following factors should be considered in reconstructive prcedure of midface. First, multiple procedure may need for complete the reconstruction of mid face defect. Second, secondary reconstructive surgeries such as flap rotation or skin graft may need for donor site morbidity. Third, the color, texture and thickness of the skin used are not always complacency. Methods: 8 cases of the midface defects (3 cases of lower eyelid, 1 case of intercanthal area, and 4 cases of nose) from skin cancer were reconstructed with retroangular flap from March 2004 to August 2005. Results: Satisfactory result were obtained in color, texture and donor site scar. There was no major complication such as wound disruption, hematoma, and atrophy of flap. But partial necrosis of flap and bulkiness were observed one case in each. Retroangular flap is simple procedure that can be preceded in one stage under local anesthesia closing primary wound closure. It will leave less visible donor scar, acceptable color, texture and thickness of the skin. Conclusions: The retro-angular flap could be suggested as a safe and effective method for midface reconstruction.

A Study on Character Recognition using Wavelet Transformation and Moment (웨이브릿 변환과 모멘트를 이용한 문자인식에 관한 연구)

  • Cho, Meen-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.10
    • /
    • pp.49-57
    • /
    • 2010
  • In this thesis, We studied on hand-written character recognition, that characters entered into a digital input device and remove noise and separating character elements using preprocessing. And processed character images has done thinning and 3-level wavelet transform for making normalized image and reducing image data. The structural method among the numerical Hangul recognition methods are suitable for recognition of printed or hand-written characters because it is usefull method deal with distortion. so that method are applied to separating elements and analysing texture. The results show that recognition by analysing texture is easily distinguished with respect to consonants. But hand-written characters are tend to decreasing successful recognition rate for the difficulty of extraction process of the starting point, of interconnection of each elements, of mis-recognition from vanishing at the thinning process, and complexity of character combinations. Some characters associated with the separation process is more complicated and sometime impossible to separating elements. However, analysis texture of the proposed character recognition with the exception of the complex handwritten is aware of the character.

A Study on the Improving the Rendering Performance of the 3D Road Model for the Vehicle Simulator (차량 시뮬레이터를 위한 3차원 도로모델의 렌더링 성능 향상에 관한 연구)

  • Choi, Young-Il;Jang, Suk;Kim, Kyu-Hee;Cho, Ki-Yong;Kwon, Seong-Jin;Suh, Myung-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.162-170
    • /
    • 2004
  • In these days, a vehicle simulator is developed by using a VR(Virtual Reality) system. A VR system must provide a vehicle simulator with a natural interaction, a sufficient immersion and realistic images. To achieve this, it is important to provide a fast and uniform rendering performance regardless of the complexity of virtual worlds or the level of simulation. In this paper, modeling methods which offer an improved rendering performance for complex VR applications as 3D road model have been implemented and verified. The key idea of the methods is to reduce a load of VR system by means of LOD(Level of Detail), alpha blending texture mapping, texture mip-mapping and bilboard. Hence, in 3D road model where a simulation is complex or a scene is very large, the methods can provide uniform and acceptable frame rates. The VR system which is constructed with the methods has been experimented under the various application environments. It is confirmed that the proposed methods are effective and adequate to the VR system which associates with a vehicle simulator.

Image Retrieval Using Spacial Color Correlation and Local Texture Characteristics (칼라의 공간적 상관관계 및 국부 질감 특성을 이용한 영상검색)

  • Sung, Joong-Ki;Chun, Young-Deok;Kim, Nam-Chul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.103-114
    • /
    • 2005
  • This paper presents a content-based image retrieval (CBIR) method using the combination of color and texture features. As a color feature, a color autocorrelogram is chosen which is extracted from the hue and saturation components of a color image. As a texture feature, BDIP(block difference of inverse probabilities) and BVLC(block variation of local correlation coefficients) are chosen which are extracted from the value component. When the features are extracted, the color autocorrelogram and the BVLC are simplified in consideration of their calculation complexity. After the feature extraction, vector components of these features are efficiently quantized in consideration of their storage space. Experiments for Corel and VisTex DBs show that the proposed retrieval method yields 9.5% maximum precision gain over the method using only the color autucorrelogram and 4.0% over the BDIP-BVLC. Also, the proposed method yields 12.6%, 14.6%, and 27.9% maximum precision gains over the methods using wavelet moments, CSD, and color histogram, respectively.

Rendering Performance Evaluation of 3D Games with Interior Mapping (Interior Mapping이 적용된 3D 게임의 렌더링 성능 평가)

  • Lee, Jae-Won;Kim, Youngsik
    • Journal of Korea Game Society
    • /
    • v.19 no.6
    • /
    • pp.49-60
    • /
    • 2019
  • Interior Mapping has been used to reduce graphics resources. In this paper, rendering speed(FPS), the number of polygons, shader complexity and each resource size of Interior Mapping were compared to those of actual modeling in order to examine the performance of 3D games when the technology is adapted by utilizing Unreal Engine 4. In addition, for the efficient application, the difference in performance according to the resolution and detail of cube map texture was verified.

An Improvement Algorithm for the Image Compression Imaging

  • Hu, Kaiqun;Feng, Xin
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.30-41
    • /
    • 2020
  • Lines and textures are natural properties of the surface of natural objects, and their images can be sparsely represented in suitable frames such as wavelets, curvelets and wave atoms. Based on characteristics that the curvelets framework is good at expressing the line feature and wavesat is good at representing texture features, we propose a model for the weighted sparsity constraints of the two frames. Furtherly, a multi-step iterative fast algorithm for solving the model is also proposed based on the split Bergman method. By introducing auxiliary variables and the Bergman distance, the original problem is transformed into an iterative solution of two simple sub-problems, which greatly reduces the computational complexity. Experiments using standard images show that the split-based Bergman iterative algorithm in hybrid domain defeats the traditional Wavelets framework or curvelets framework both in terms of timeliness and recovery accuracy, which demonstrates the validity of the model and algorithm in this paper.

Efficient 3D Model based Face Representation and Recognition Algorithmusing Pixel-to-Vertex Map (PVM)

  • Jeong, Kang-Hun;Moon, Hyeon-Joon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.228-246
    • /
    • 2011
  • A 3D model based approach for a face representation and recognition algorithm has been investigated as a robust solution for pose and illumination variation. Since a generative 3D face model consists of a large number of vertices, a 3D model based face recognition system is generally inefficient in computation time and complexity. In this paper, we propose a novel 3D face representation algorithm based on a pixel to vertex map (PVM) to optimize the number of vertices. We explore shape and texture coefficient vectors of the 3D model by fitting it to an input face using inverse compositional image alignment (ICIA) to evaluate face recognition performance. Experimental results show that the proposed face representation and recognition algorithm is efficient in computation time while maintaining reasonable accuracy.

Bayesian-theory-based Fast CU Size and Mode Decision Algorithm for 3D-HEVC Depth Video Inter-coding

  • Chen, Fen;Liu, Sheng;Peng, Zongju;Hu, Qingqing;Jiang, Gangyi;Yu, Mei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1730-1747
    • /
    • 2018
  • Multi-view video plus depth (MVD) is a mainstream format of 3D scene representation in free viewpoint video systems. The advanced 3D extension of the high efficiency video coding (3D-HEVC) standard introduces new prediction tools to improve the coding performance of depth video. However, the depth video in 3D-HEVC is time consuming. To reduce the complexity of the depth video inter coding, we propose a fast coding unit (CU) size and mode decision algorithm. First, an off-line trained Bayesian model is built which the feature vector contains the depth levels of the corresponding spatial, temporal, and inter-component (texture-depth) neighboring largest CUs (LCUs). Then, the model is used to predict the depth level of the current LCU, and terminate the CU recursive splitting process. Finally, the CU mode search process is early terminated by making use of the mode correlation of spatial, inter-component (texture-depth), and inter-view neighboring CUs. Compared to the 3D-HEVC reference software HTM-10.0, the proposed algorithm reduces the encoding time of depth video and the total encoding time by 65.03% and 41.04% on average, respectively, with negligible quality degradation of the synthesized virtual view.

An Approximation Technique for Real-time Rendering of Phong Reflection Model with Image-based Lighting (영상 기반 조명을 적용한 퐁 반사 모델의 실시간 렌더링을위한 근사 기법)

  • Jeong, Taehong;Shin, Hyun Joon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.20 no.1
    • /
    • pp.13-19
    • /
    • 2014
  • In this paper, we introduce a real-time method to render a 3D scene using image-based lighting. Previous approaches for image-based lighting focused on diffuse reflection and mirror-like specular reflection. In this paper, we provide a simple preprocessing approach to efficiently approximate Phong reflection model, which has been used for computer graphics applications for several decades. For diffuse reflection, we generate a texture map for diffuse reflection by integrating the source image in preprocessing step, similarly to the previous approaches. We adopt the similar idea to produce a set of specular reflection maps for various material shininess. By doing this, we can render a dynamic scene without high computational complexity or numerous texture map access.