• Title/Summary/Keyword: Textile Structures

Search Result 184, Processing Time 0.029 seconds

A Study on Women's Underwear Structures by Ideal Beauty - Focused on period 1850 - 1910 - (이상미(理想美)에 따른 여성(女性)속옷구성(構成)에 관(關)한 연구(硏究) - 1850년(年)-1910년(年)을 중심(中心)으로 -)

  • Kim, Jee-Yeon;Chun, Hei-Jung
    • Journal of Fashion Business
    • /
    • v.5 no.2
    • /
    • pp.35-48
    • /
    • 2001
  • The purpose of this research is to understand the importance and structure of underwear which is the closest cloth to the body. Scope of this research is from middle of 19th century to the beginning of 20th century. Firstly, I studied background of the times and change of women's status and duty. Secondly, I examined the outer garment closely by the ideal beauty of each period based on the study, and thirdly I looked into structure ways of underwear. Then lastly, I took a close look about the relation of outer garment and underwear, comparing with and researching both. I studied this research, focusing on corset, crinoline and bustle based on main characters such as reform and transform among several functions of underwear. The research results are such as follows. First of all, when women's social and economic status was subjected to men, women had worn corset and fashionable dresses even though there was many object movements and vices in women's garment. Secondly, according to those movements, the ideal beauty had changed little in the same sort emphasizing on breast and hip. Thirdly, structure method of underwear changed by ideal beauty and shape of outer garment. Due to increasing sports participation, improvement of women's position, achievement of practical use, women used more drawers and stopped wearing hoop. And the weight of underwear like combination and suspender attached to corset had decreased and advanced into the more practical way. Because of industrialization, function seemed to be granted by technology development, social position change of femininity.

  • PDF

Optimized Structural and Colorimetrical Modeling of Yarn-Dyed Woven Fabrics Based on the Kubelka-Munk Theory (Kubelka-Munk이론에 기반한 사염직물의 최적화된 구조-색채모델링)

  • Chae, Youngjoo
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.42 no.3
    • /
    • pp.503-515
    • /
    • 2018
  • In this research, the three-dimensional structural and colorimetrical modeling of yarn-dyed woven fabrics was conducted based on the Kubelka-Munk theory (K-M theory) for their accurate color predictions. In the K-M theory for textile color formulation, the absorption and scattering coefficients, denoted K and S, respectively, of a colored fabric are represented using those of the individual colorants or color components used. One-hundred forty woven fabric samples were produced in a wide range of structures and colors using red, yellow, green, and blue yarns. Through the optimization of previous two-dimensional color prediction models by considering the key three-dimensional structural parameters of woven fabrics, three three-dimensional K/S-based color prediction models, that is, linear K/S, linear log K/S, and exponential K/S models, were developed. To evaluate the performance of the three-dimensional color prediction models, the color differences, ${\Delta}L^*$, ${\Delta}C^*$, ${\Delta}h^{\circ}$, and ${\Delta}E_{CMC(2:1)}$, between the predicted and the measured colors of the samples were calculated as error values and then compared with those of previous two-dimensional models. As a result, three-dimensional models have proved to be of substantially higher predictive accuracy than two-dimensional models in all lightness, chroma, and hue predictions with much lower ${\Delta}L^*$, ${\Delta}C^*$, ${\Delta}h^{\circ}$, and the resultant ${\Delta}E_{CMC(2:1)}$ values.

Improvement of Photo-stability for p-Aramid Fibers by SiO2/TiO2 Sol-Gel Method (SiO2/TiO2 sol-gel법을 이용한 p-아라미드 섬유의 내광성 증진)

  • Lee, Young-Il;Jung, Min-Hyuck;Lee, Mun-Cheul
    • Textile Coloration and Finishing
    • /
    • v.25 no.3
    • /
    • pp.172-180
    • /
    • 2013
  • Aramid fibers are being used increasingly in a wide range of application due to low density, high specific strength, high modulus, and high thermal resistance. But owing to its special physical and chemical structures, it is sensitive to absorb the ultraviolet light which will degrade the fiber's useful mechanical properties and structure. In this paper, the sol-gel technique was used to improve the photo-stability of p-aramid fibers. $TiO_2$, modified $SiO_2$/$TiO_2$ sol were used as coating solutions. The influence of the such coatings on the photo-stability of p-aramid fiber was investigated by an accelerated photo-ageing method using xenon lamp. The photo-stability of p-aramid fiber showed obvious improvement after the modified silica binding coating. But the amorphous $TiO_2$ sol coatings showed a negative effect. After 144h light exposure, the modified silane binder-coated fibers showed less degradation in mechanical properties with the retained tensile strength greater than about 70% of the original value.

Adhesive Property Changes Associated with the Content of Acrylic Acid Monomer and Aziridine Crosslinking Agent (아크릴산 단량체와 아지리딘 경화제 함량에 따른 점착제의 점착물성 변화)

  • Choi, Hwan-Seok;Hwang, Hyo-Yeon;Jeoung, Sun-Kyoung;Lee, Seung-Goo;Lee, Kee-Yoon
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.29-33
    • /
    • 2012
  • Solution type pressure sensitive acrylic adhesives were synthesized from 2-ethylhexyl acrylate (2-EHA) as a base monomer and acrylic acid as a functional monomer. The surface energy and basic physical properties of synthesized PSA (pressure sensitive adhesives) were investigated as a function of contents of acrylic acid and crosslinking agent. The structures of adhesive were identified by FTIR. Viscosities and molecular weights of PSA were measured by a Brookfield viscometer and GPC, respectively. Consequently, molecular weight and viscosity increased as the contents of acrylic acid increased up to 6 wt% and then decreased at higher contents. Surface energy increased as the contents of acrylic acid increased owing to the increase of COOH groups, which yielded the enhancement of polarity of PSA. On the other hands, their peel strengths were inversely proportional to molecular weight and showed tendencies of decreasing as the contents of acrylic acid and crosslinking agent increased.

A Study on the Characteristics of AI Fashion based on Emotions -Focus on the User Experience- (감성을 기반으로 하는 AI 패션 특성 연구 -사용자 중심(UX) 관점으로-)

  • Kim, Minsun;Kim, Jinyoung
    • Journal of Fashion Business
    • /
    • v.26 no.1
    • /
    • pp.1-15
    • /
    • 2022
  • Digital transformation has induced changes in human life patterns; consumption patterns are also changing to digitalization. Entering the era of industry 4.0 with the 4th industrial revolution, it is important to pay attention to a new paradigm in the fashion industry, the shift from developer-centered to user-centered in the era of the 3rd industrial revolution. The meaning of storing users' changing life and consumption patterns and analyzing stored big data are linked to consumer sentiment. It is more valuable to read emotions, then develop and distribute products based on them, rather than developer-centered processes that previously started in the fashion market. An AI(Artificial Intelligence) deep learning algorithm that analyzes user emotion big data from user experience(UX) to emotion and uses the analyzed data as a source has become possible. By combining AI technology, the fashion industry can develop various new products and technologies that meet the functional and emotional aspects required by consumers and expect a sustainable user experience structure. This study analyzes clear and useful user experience in the fashion industry to derive the characteristics of AI algorithms that combine emotions and technologies reflecting users' needs and proposes methods that can be used in the fashion industry. The purpose of the study is to utilize information analysis using big data and AI algorithms so that structures that can interact with users and developers can lead to a sustainable ecosystem. Ultimately, it is meaningful to identify the direction of the optimized fashion industry through user experienced emotional fashion technology algorithms.

Fiber Based Supercapacitors for Wearable Application (웨어러블 응용을 위한 섬유형 슈퍼커패시터)

  • Jae Myeong Lee;Wonkyeong Son;Juwan Kim;Jun Ho Noh;Myoungeun Oh;Jin Hyeong Choi;Changsoon Choi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.303-325
    • /
    • 2023
  • Flexible fiber- or yarn-based one-dimensional (1-D) energy storage devices are essential for developing wearable electronics and have thus attracted considerable attention in various fields including ubiquitous healthcare (U-healthcare) systems and textile platforms. 1-D supercapacitors (SCs), in particular, are recognized as one of the most promising candidates to power wearable electronics due to their unique energy storage and high adaptability for the human body. They can be woven into textiles or effectively designed into diverse architectures for practical use in day-to-day life. This review summarizes recent important development and advances in fiber-based supercapacitors, concerning the active materials, fiber configuration, and applications. Active materials intended to enhance energy storage capability including carbon nanomaterials, metal oxides, and conductive polymers, are first discussed. With their loading methods for fiber electrodes, a summary of the four main types of fiber SCs (e.g., coil, supercoil, buckle, and hybrid structures) is then provided, followed by demonstrations of some practical applications including wearability and power supplies. Finally, the current challenges and perspectives in this field are made for future works.

A Study of the Structures and Product Dimensions of Hygienic Face Mask for Infants and Children in the Domestic Market (국내 시판 유아동 보건용 마스크 구조 및 제품 치수 비교 연구)

  • Ji Eun Kim
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.25 no.3
    • /
    • pp.113-125
    • /
    • 2023
  • The COVID-19 pandemic has led to the normalization of mask-wearing worldwide, and young children are particularly vulnerable to respiratory diseases. Children's masks come in various sizes and shapes, causing confusion among consumers who struggle to find products that can accommodate their child's unique physical conditions. This research aims to analyze the shape and dimensions of health masks designed for young children. A total of 67 mask varieties were collected, and 58 were subjected to analysis. The masks were found to have two primary shapes: foldable and beak-like, with sizes categorized as small and extra-small. The majority of masks were manufactured in Korea, and the size labeling systems varied among manufacturers. The mask materials were non-woven fabric or polypropylene, and there was diversity in terms of the adjustable earbands and the use of additional accessories. The dimensions of the masks varied depending on their shape, with significant differences in the weight and the length of the wire holes. Subsequent research should focus on conducting wearability evaluations to verify the dimensional suitability of commercially available children's health masks based on shape and size. Additionally, this study aims to provide foundational data that can assist in the development of children's masks with size ranges that differentiate them from adult masks and cater to specific age groups.

Assessment of Wicking and Fast Dry Properties According to Moisture Transport Measurement Method of Knit and Woven Fabrics for Garment (의류소재용 직·편물의 수분이동 특성 측정 방법에 따른 흡한속건성 평가)

  • Kim, Hyun-ah;Kim, Seung-jin
    • Science of Emotion and Sensibility
    • /
    • v.20 no.2
    • /
    • pp.117-126
    • /
    • 2017
  • In this study, moisture transport characteristics for the woven and knitted fabrics made of 8 kinds of fiber materials using MMT (moisture management tester) were measured and discussed with the Bireck bt MMT and water evaporating rate (WER) measuring methods, which are vertical moisture transport methods. In addition, the drying property by MMT of the eight kinds of specimens was compared and discussed with the results measured by the vertical drying measurement. MMT experimental result which is horizental moisture transport appeared to be similar to the result of the Bireck method, which is the vertical moisture transport experiment. Absortion time measured from drip method of the fabrics made of the bamboo, linen, and cotton/nylon composite fabrics was short and thus they showed best wicking property, which was attributed to the low contact angle on the fabric surface and high porosity of the fabrics due to the staple yarn structure composed of the hydrophilic staple fibers. In drying property of the fabric specimens by MMT, maximum absorption radius of the dry-zone knit and bamboo woven fabrics were the highest and they showed the best drying property, which was a little different result compared with vertical drying measurement method. Half time of the drying rate in the MMT method was highly correlated with the fabric thickness and saturated moisture absortion rate and their regression coefficients were 0.9 and 0.88, respectively. This means that the knitted and woven fabric design technology for retaining good wicking and drying properties of the fabrics with thin fabric thickness is very important for obtaining high functional wear comfort fabrics. In addition, wicking and drying properties of the fabrics made of different fiber materials and with different yarns and fabric structures showed different results according to the measuring methods.

Preparation and Characterization of High Absorptive Cellulose Film Derived from Styela Clava Tunic for Wound Dressing (흡수성이 우수한 창상치료용 미더덕껍질 셀룰로오스필름의 제조 및 특성 분석)

  • Seong, Keum-Yong;Koh, Eun-Kyoung;Lee, Seunghyun;Kwak, Moon Hwa;Son, Hong Joo;Lee, Hee Seob;Hwang, Dae Youn;Jung, Young Jin
    • Textile Coloration and Finishing
    • /
    • v.27 no.1
    • /
    • pp.70-79
    • /
    • 2015
  • To establish the optimal conditions for the manufacture of high absortive cellulose film(CF) originated from Styela clava tunic(SCT), the physicochemical properties included absorption was measured in CFs prepared under the various conditions. The highest absorption was observed for SCT-CF20 prepared from the cellulose solution dissolved at $80^{\circ}C$ for 20min, although the filtration treatment did not induce any significance alteration. Also, the absorption was higher in SCT-CF20-F prepared by the freeze drying than SCT-CF20-N(ambient air drying) and SCT-CF20-H(heat drying). The addition of porogen($NaHCO_3$) induced an increase of absorption in SCT-CF20-PF relative to SCT-CF20-F, while the number of interconnected porous structures was enhanced in SCT-CF20-PF. Furthermore, a high level of SK-MEL-2 cells viability was observed in SCT-CF20-PN and SCT-CF20-PF cultured group. These results show that SCT-CF may have high absorption and biocompatibility when prepared from SCT cellulose solution dissolved at $80^{\circ}C$ for 20min after addition of porogen and then subjected to freeze drying.

An Analysis of Water Consumption Structures in Korean Industry Using the Input-Output Model (산업연관모형을 이용한 우리나라 산업의 직·간접 물소비 구조 분석)

  • Park, Chang-Gui;Lee, Ki-Hoon
    • Journal of Environmental Policy
    • /
    • v.9 no.2
    • /
    • pp.21-39
    • /
    • 2010
  • In this paper, water consumption annually for industries in Korea was estimated for the first time and based on this, an input-output model was prepared for water consumption analysis. Also making use of this, the direct and indirect water consumption effect according to industrial activities was analyzed and the total effect based on volume was broken down into each factor. The amount of water consumed for industries in Korea (excluding agriculture, forestry and fishery) was estimated about 7 billion and 692 million ton in 2003(excluding sea water). Classifying by industry, the one for electric power & water service accounted for almost half, 49.5%, metalworking industry for 24.3% and chemical industry for 5.0%. As the result of estimation for the direct and indirect water consumption inducement coefficients, the amount of water consumed per the production of one million won ranked the highest for electric power & water service as 113.8 ton and the next highest ones ranked as 49.6 ton for the first metalworking, 16.8 ton for textile and leather goods, and 11.9 ton for general machinery respectively. In the meantime, as the result of breaking down into each factor of total amount of water consumed by industry, it appeared that the ripple effect having on other industries was more than the direct effect.

  • PDF