DOI QR코드

DOI QR Code

Preparation and Characterization of High Absorptive Cellulose Film Derived from Styela Clava Tunic for Wound Dressing

흡수성이 우수한 창상치료용 미더덕껍질 셀룰로오스필름의 제조 및 특성 분석

  • Seong, Keum-Yong (Department of Biomaterials Science and Life and Industry Convergence Research Institute, Pusan National University) ;
  • Koh, Eun-Kyoung (Department of Biomaterials Science and Life and Industry Convergence Research Institute, Pusan National University) ;
  • Lee, Seunghyun (Department of Biomaterials Science and Life and Industry Convergence Research Institute, Pusan National University) ;
  • Kwak, Moon Hwa (Department of Biomaterials Science and Life and Industry Convergence Research Institute, Pusan National University) ;
  • Son, Hong Joo (Department of Life Science and Environment Biochemistry, Pusan National University) ;
  • Lee, Hee Seob (Department of Food Science and Nutrition, Pusan National University) ;
  • Hwang, Dae Youn (Department of Biomaterials Science and Life and Industry Convergence Research Institute, Pusan National University) ;
  • Jung, Young Jin (Department of Biomaterials Science and Life and Industry Convergence Research Institute, Pusan National University)
  • 성금용 (부산대학교 바이오소재과학과/생명융합연구원) ;
  • 고은경 (부산대학교 바이오소재과학과/생명융합연구원) ;
  • 이승현 (부산대학교 바이오소재과학과/생명융합연구원) ;
  • 곽문화 (부산대학교 바이오소재과학과/생명융합연구원) ;
  • 손홍주 (부산대학교 생명환경화학과) ;
  • 이희섭 (부산대학교 식품영양학과) ;
  • 황대연 (부산대학교 바이오소재과학과/생명융합연구원) ;
  • 정영진 (부산대학교 바이오소재과학과/생명융합연구원)
  • Received : 2015.01.02
  • Accepted : 2015.03.20
  • Published : 2015.03.27

Abstract

To establish the optimal conditions for the manufacture of high absortive cellulose film(CF) originated from Styela clava tunic(SCT), the physicochemical properties included absorption was measured in CFs prepared under the various conditions. The highest absorption was observed for SCT-CF20 prepared from the cellulose solution dissolved at $80^{\circ}C$ for 20min, although the filtration treatment did not induce any significance alteration. Also, the absorption was higher in SCT-CF20-F prepared by the freeze drying than SCT-CF20-N(ambient air drying) and SCT-CF20-H(heat drying). The addition of porogen($NaHCO_3$) induced an increase of absorption in SCT-CF20-PF relative to SCT-CF20-F, while the number of interconnected porous structures was enhanced in SCT-CF20-PF. Furthermore, a high level of SK-MEL-2 cells viability was observed in SCT-CF20-PN and SCT-CF20-PF cultured group. These results show that SCT-CF may have high absorption and biocompatibility when prepared from SCT cellulose solution dissolved at $80^{\circ}C$ for 20min after addition of porogen and then subjected to freeze drying.

Keywords

References

  1. M. Kokabi, M. Sirousazar, and Z. M. Hassan, PVA-clay Nanocomposite Hydrogels for Wound Dressing, Eur. Polym. J., 43(3), 773(2007). https://doi.org/10.1016/j.eurpolymj.2006.11.030
  2. G. A. Kannon and A. B. Garrett, Moist Wound Healing with Occlusive Dressings, A Clinical Review, Dermatol. Surg., 21(1), 583(1995).
  3. W. I. Kim, C. J. Kim, D. Y. Kim, O. K. Kwon, and O. H. Kwon, Fabrication and Characterization of Polyurethane Foam for Wound Dressing, Polymer(Korea), 34(5), 442(2010).
  4. C. J. Doillon, Porous Collagen Sponge Wound Dressing: in Vivo and in Vitro Studies, J. Biomater. Appl., 2(4), 562(1988). https://doi.org/10.1177/088532828700200404
  5. S. B. Lee, Y. H. Kim, M. S. Chong, S. H. Hong, and Y. M. Lee, Study of Gelatin-containing Artificial Skin V: Fabrication of Gelatin Scaffolds using a Salt-leaching Method, Biomaterials, 26(14), 1961(2005). https://doi.org/10.1016/j.biomaterials.2004.06.032
  6. E. Petra, Y. Julia, K. L. Rachel, D. S. Lonnie, and J. M. David, Porous Carriers for Biomedial Applications based on Alginate Hydrogels, Biomaterials, 21(19), 1921(2000). https://doi.org/10.1016/S0142-9612(00)00033-8
  7. M. S. Khil, D. I. Cha, H. Y. Kim, I. S. Kim, and N. Bhattarai, Electrospun Nanofibrous Polyurethane Membrane as Wound Dressing, J. Biomed. Mater. Res. B Appl. Biomater., 67(2), 675(2003).
  8. S. K. Bajpai, M. Bajpai, and L. Sharma, Poly (methacrylamide-co-acrylicacid) Hydrogels for Gastrointestinal Delivery of Theophylline I. Swelling Characterization, J. Macromol. Sci., 101(4), 2995(2006).
  9. D. R. Houghton and R. H. Millar, Spread of Styela mammiculata Carlisle, Nature, 185, 862(1960).
  10. K. A. Hillock and H. J. Costello, Tolerance of the Invasive Tunicate Styela clava to Air Exposure, Biofouling, 29(10), 1181(2013). https://doi.org/10.1080/08927014.2013.832221
  11. M. J. Wonham and J. T. Carlton, Trends in Marine Biological Invasions at Local and Regional Scales: the Northeast Pacific Ocean as a Model System, Biol. Invasions., 7, 369(2005). https://doi.org/10.1007/s10530-004-2581-7
  12. M. H. Davis and M. E. Davis, Styela clava (Tunicata: Ascidiacea) - A New Addition to the Fauna of the Portuguese Coast, J. Mar. Biol. Assoc. UK, 85(2), 403(2005). https://doi.org/10.1017/S002531540501132Xh
  13. S. H. Ahn, S. H. Jung, S. J. Kang, T. S. Jeong, and B. D. Choi, Extraction Glycosaminoglycans from Styela clava Tunic, Korean J. Biotechonl. Bioeng., 18(3), 180(2003).
  14. A. Bodin, L. Gustafsson, and P. Gatenholm, Surface-engineered Bacterial Cellulose as Template for Crystallization of Calcium Phosphate, J. Biomater. Sci. Polym. Ed., 17(4), 435(2006). https://doi.org/10.1163/156856206776374106
  15. S. Shiqeta, O. Suzuki, Y. Aki, S. Kawamoto, and K. Ono, Purification and Characterization of Sea Squirt Alpha-N-acetylgalactosaminidase, J. Biosci. Bioeng., 89(1), 84(2000). https://doi.org/10.1016/S1389-1723(00)88056-1
  16. Y. J. Jung, Properties of Regenerated Cellulose Films Prepared from the Tunicate Styela clava, J. Kor. Fish. Soc., 41(4), 237(2008).
  17. D. Zhang, Q. Zhang, X. Gao, and G. Piao, A Nanocellulose Polypyrrole Composite based on Tunicate Cellulose, Int. J. Polym. Sci., 2013, 1(2013).
  18. S. M. Kim, J. H. Lee, J. A. Jo, S. C. Lee, and S. K. Lee, Development of a Bioactive Cellulose Membrane from Sea Squirt Skin for Bone Regeneration a Preliminary Research, J. Kor. Oral Maxillofac. Surg., 31, 440(2005).
  19. H. Zhang, J. Wu, J. Zhang, and J. He, 1-Allyl-3-methylimidazolium Chloride Room Temperature Ionic Liquid: A New and Powerful Nonderivatizing Solvent for Cellulose, Macromolecules, 38(20), 8272(2005). https://doi.org/10.1021/ma0505676
  20. D. Gerlier and N. Thomasset, Use of MTT Colorimetric Assay to Measure Cell Activation, J. Immunol. Methods., 94(1-2), 57(1986). https://doi.org/10.1016/0022-1759(86)90215-2
  21. L. C. F. Stubberfield and P. J. A. Shaw, A Comparison of Tetrazolium Reduction and FDA Hydrolysis with Other Microbial Activity, J. Microbiol. Methods, 12, 151(1990). https://doi.org/10.1016/0167-7012(90)90026-3
  22. C. F. Liu, R. C. Sun, A. P. Zhang, J. L. Ren, and Z. C. Geng, Structural and Thermal Characterization of Sugarcane Bagasse Cellulose Succinates Prepared in Ionic Liquid, Polym. Degrad. Stab., 91, 3040(2006). https://doi.org/10.1016/j.polymdegradstab.2006.08.004
  23. S. Y. Oh, D. I. Yoo, Y. Shin, H. C. Kim, H. Y. Kim, Y. S. Chung, and W. H. Park, Crystalline Structure Analysis of Cellulose Treated with Sodium Hydroxide and Carbon Dioxide by Means of X-ray Diffraction and FTIR Spectroscopy, Carbohydr. Res., 340(15), 2376(2005). https://doi.org/10.1016/j.carres.2005.08.007
  24. H. G. Higgins, C. M. Stewart, and K. J. Harrington, Infrared Spectra of Cellulose and Related Polysaccharides, J. Polym. Sci., 51(155), 59(1961). https://doi.org/10.1002/pol.1961.1205115505
  25. S. Zhou, K. Tashiro, T. Hongo, H. Shirataki, C. Yamane, and T. Li, Influence of Water on Structure and Mechanical Properties of Regenerated Cellulose Studied by an Organized Combination of Infrared Spectra, X-ray Diffraction, and Dynamic Viscoelastic Data Measured as Functions of Temperature and Humidity, Macromolecules, 34, 1274(2001). https://doi.org/10.1021/ma001507x
  26. Y. Kataoka and T. Kondo, Quantitative Analysis for the Cellulose I Alpha Crystalline Phase in Developing Wood Cell Walls, Int. J. Biol. Macromol., 24(1), 37(1999). https://doi.org/10.1016/S0141-8130(98)00065-8
  27. S. Raymond, B. Henrissat, D. T. Qui, A. Kvick, and H. Chanzy, The Crystal Structure of Methyl Beta-cellotrioside Monohydrate 0.25 Ethanolate and its Relationship to Cellulose II, Macromolecules, 277(2), 209(1995).
  28. F. J. Kolpak and J. Blackwell, Determination of the Structure of Cellulose II, Macromolecules, 9(2), 273(1976). https://doi.org/10.1021/ma60050a019
  29. F. J. Kolpak and J. Blackwell, Communications to the Editor: The Structure of Regenerated Cellulose, Macromolecules, 8(4), 583(1975).
  30. P. Sriamornsak and R. A. Kennedy, Swelling and Diffusion Studies of Calcium Polysaccharide Gels Intended for Film Coating, Int. J. Pharm., 358(1-2), 205(2008). https://doi.org/10.1016/j.ijpharm.2008.03.009
  31. J. H. Jung, J. Kim, and K. Y. Lee, Swelling Behavior of Low Toxic Absorbent Based on Biopolymer, Polymer(Korea), 37, 478(2013).

Cited by

  1. Effects of different cellulose membranes regenerated from Styela clava tunics on wound healing vol.39, pp.5, 2017, https://doi.org/10.3892/ijmm.2017.2923
  2. Characterization of Styela clava Tunic after Alkaline Treatment vol.45, pp.5, 2016, https://doi.org/10.3746/jkfn.2016.45.5.690
  3. Toxicity of antioxidative extract collected fromStyela clavatunics in ICR mice vol.31, pp.3, 2015, https://doi.org/10.5625/lar.2015.31.3.125
  4. tunic accelerates the healing process of cutaneous wounds in streptozotocin-induced diabetic Sprague–Dawley rats vol.29, pp.6, 2018, https://doi.org/10.1080/09546634.2018.1425357