• Title/Summary/Keyword: Textbook Development Procedure

Search Result 13, Processing Time 0.021 seconds

The Effects of Prior Knowledge and Development Procedure to Teaching Materials Developed by the Pre-service Earth Science Teachers-Focused on the Teaching Materials in the Schoolyard (예비 지구과학교사들의 선행지식과 개발 절차가 교수학습 자료에 미치는 영향: 교정에 적용할 수 있는 자료를 중심으로)

  • Chung, Duk-Ho
    • Journal of the Korean earth science society
    • /
    • v.32 no.1
    • /
    • pp.140-151
    • /
    • 2011
  • This study is to search the problems of schoolyard teaching material developed by pre-service earth science teachers and the critical factors affecting material making. The 258 schoolyard teaching materials was collected from 54 pre-service earth science teachers (male: 18, female: 36) major in Earth Science Education in Jeonju, Korea. The schoolyard teaching materials was greatly influenced by making process type of it and the prior knowledge of pre-service earth science teachers. As schoolyard preference exploratory type rely on their prior knowledge to develop the schoolyard teaching materials, they made use of the limited concepts like fault in material making. But the concept preference exploratory type made use of concepts not accessible to majority of pre-service earth science teachers because they selected a concept from the earth science textbook first of all. The pre-service earth science teachers having wrong prior knowledge selected inappropriate resources, as well as fell into the error of concept connecting. The pre-service earth science teachers having right prior knowledge partly considered only shape of resources, but had a disregard for formation process of it in material making. Accordingly, we need to reflect richly Geological Field Trip and Solid Earth Science to curriculum for earth science teacher education. And we have to educate pre-service earth science teachers to create holistic concept on the geological subject matter knowledge, field based teaching and learning strategy, material making process.

A Study on the Development of Instruction Model on Project inquiry and Materials for the New Subject of 'Mathematical Task Inquiry' in the curriculum revised in 2015 (2015 개정 <수학과제 탐구> 신설 과목 운영을 위한 과제 탐구의 수업 모형 및 자료 개발 연구)

  • Hwang, Hye Jeang;Kim, Ju Mi
    • Communications of Mathematical Education
    • /
    • v.32 no.3
    • /
    • pp.363-383
    • /
    • 2018
  • The subject of 'Mathematical Task Inquiry' was introduced newly in the curriculum revised in 2015. The subject is dealt with after completing the subject of 'mathematics' to be dealt with in the tenth grade. Its main content is comprised of the understanding and learning of the purpose and procedure of inquiry task and of study ethics, and its educational goal is to enforce the prior mathematical knowledge and to obtain the ability to select interesting topics that combine mathematics with other subjects. However the textbook of the subject does not exist, and teachers should handle with the subject with responsibility for their own ways. Because of this reason, this study is to develop an instruction model on project(task) inquiry model and materials. Namely, according to the model, students is guided to select and decide the subject of the task, and develop the task for themselves, solve it with peers in cooperation, and announce the solution and their feelings. During those students' exploration and activities, the role of teachers is to guide students to complete their work. By the way, in order to develop more creative tasks that is appropriate to their academic and cognitive level, this study conducted the experimentation for the subject of 9 students (6 girls and 3 boys), who are scheduled to advance to the 11 grade of J high school located in G domestic. The experimentation was consisted of three class and after the third class, the semi-structured interview was conducted immediately for the students.

Analysis of Precipitate Formation Reaction for Measuring Chemical Reaction Rate and Its Development Appling Small-Scale Chemistry (앙금 생성 반응을 이용한 화학반응속도 측정 실험의 분석과 Small-Scale Chemistry를 적용한 실험 개발)

  • Park, Kuk-Tae;Noh, Ji-Hyun;Kim, Dong-Jin;Ryu, Ran-Yeong;Noh, Yun-Mi;Kim, Myo-Kyung;Lee, Sang Kwon
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.3
    • /
    • pp.303-314
    • /
    • 2008
  • The purpose of this study was to understand the experiment for measuring chemical reaction rate by precipitate formation and to develop experiments applying small-scale chemistry. For this study, the experimental method for measuring the effect of concentration and temperature on chemical reaction rates presented in the 10 high school science textbooks were classified by their experimental methods of confirming production. Subsequently, problems observed in carrying out the experiments for measuring chemical reaction rates by precipitate formation frequently presented in the 10 high school science textbooks were analyzed. Experiments applying small-scale chemistry were developed measuring chemical reaction rate by precipitate formation. According to the result of this study, there were some problems in the experimental method of precipitate formation for measuring chemical reaction rates presented in the high school science textbooks. Those problems in the science textbook experiments were insufficient specification of mixing methods of reaction solutions, obscurity of knowing when the character letter X disappeared, time delay in collecting the experimental data, formation of hazardous sulfur dioxide, uneasiness of fixing water bath container, controlling the reaction temperature, and low reproducibility. Those problems were solved by developing experiments applying smallscale chemistry. Presenting the procedure of mixing reaction solutions on the A4 reaction paper sheet made the experimental procedure clearly, using well plates and stem pipette shortened the reaction time and made it possible to continuously collect the experimental data. Furthermore, the quantity of hazardous sulfur dioxide was reduced 1/7 times and the time when the character letter X disappeared could be observed clearly. Since experiments for measuring the effect of concentration and temperature on chemical reaction rates could be performed in 30 minutes, the developing experiments applying SSC would help students understand the scientific concepts on the effect of concentration and temperature on chemical reaction rates with enough time for experimental data analysis and discussion.