• Title/Summary/Keyword: TextMining

Search Result 1,563, Processing Time 0.029 seconds

Design of a Sentiment Analysis System to Prevent School Violence and Student's Suicide (학교폭력과 자살사고를 예방하기 위한 감성분석 시스템의 설계)

  • Kim, YoungTaek
    • The Journal of Korean Association of Computer Education
    • /
    • v.17 no.6
    • /
    • pp.115-122
    • /
    • 2014
  • One of the problems with current youth generations is increasing rate of violence and suicide in their school lives, and this study aims at the design of a sentiment analysis system to prevent suicide by uising big data process. The main issues of the design are economical implementation, easy and fast processing for the users, so, the open source Hadoop system with MapReduce algorithm is used on the HDFS(Hadoop Distributed File System) for the experimentation. This study uses word count method to do the sentiment analysis with informal data on some sns communications concerning a kinds of violent words, in terms of text mining to avoid some expensive and complex statistical analysis methods.

  • PDF

Patent Keyword Analysis for Forecasting Emerging Technology : GHG Technology (부상기술 예측을 위한 특허키워드정보분석에 관한 연구 - GHG 기술 중심으로)

  • Choe, Do Han;Kim, Gab Jo;Park, Sang Sung;Jang, Dong Sik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.2
    • /
    • pp.139-149
    • /
    • 2013
  • As the importance of technology forecasting while countries and companies manage the R&D project is growing bigger, the methodology of technology forecasting has been diversified. One of the forecasting method is patent analysis. This research proposes quick forecasting process of emerging technology based on keyword approach using text mining. The forecasting process is following: First, the term-document matrix is extracted from patent documents by using text mining. Second, emerging technology keyword are extracted by analyzing the importance of word from utilizing mean values and standard deviation values of the term and the emerging trend of word discovered from time series information of the term. Next, association between terms is measured by using cosine similarity. finally, the keyword of emerging technology is selected in consequence of the synthesized result and we forecast the emerging technology according to the results. The technology forecasting process described in this paper can be applied to developing computerized technology forecasting system integrated with various results of other patent analysis for decision maker of company and country.

Analysis on Topic Trends and Topic Modeling of KSHSM Journal Papers using Text Mining (텍스트마이닝을 활용한 보건의료산업학회지의 토픽 모델링 및 토픽트렌드 분석)

  • Cho, Kyoung-Won;Bae, Sung-Kwon;Woo, Young-Woon
    • The Korean Journal of Health Service Management
    • /
    • v.11 no.4
    • /
    • pp.213-224
    • /
    • 2017
  • Objectives : The purpose of this study was to analyze representative topics and topic trends of papers in Korean Society and Health Service Management(KSHSM) Journal. Methods : We collected English abstracts and key words of 516 papers in KSHSM Journal from 2007 to 2017. We utilized Python web scraping programs for collecting the papers from Korea Citation Index web site, and RStudio software for topic analysis based on latent Dirichlet allocation algorithm. Results : 9 topics were decided as the best number of topics by perplexity analysis and the resultant 9 topics for all the papers were extracted using Gibbs sampling method. We could refine 9 topics to 5 topics by deep consideration of meanings of each topics and analysis of intertopic distance map. In topic trends analysis from 2007 to 2017, we could verify 'Health Management' and 'Hospital Service' were two representative topics, and 'Hospital Service' was prevalent topic by 2011, but the ratio of the two topics became to be similar from 2012. Conclusions : We discovered 5 topics were the best number of topics and the topic trends reflected the main issues of KSHSM Journal, such as name revision of the society in 2012.

Detection of Hidden Knowledge Using a Citation-Based Approach Based on Swanson's ABC Model (인용 정보를 고려한 미발견 공공 지식 추출: Swanson의 ABC 모델 재현 및 확장)

  • Hahm, Jung Eun;Song, Min
    • Journal of the Korean Society for information Management
    • /
    • v.32 no.2
    • /
    • pp.87-103
    • /
    • 2015
  • It is useful to find something valuable for researching through literature based discovery. Swanson's ABC model, known as literature based discovery, suggests the relationship between entities undiscovered yet. This study tries to find the valid relationship between entities by referring to citation which connects articles on similar topic. We collect citation from references in articles, and extract important concepts in titles and abstracts through text mining techniques. We reproduce the relationship between fish oil and Raynaud's disease, which is known as one of Swanson's works, and compare the results with entities identified from traditional approach.

An Exploratory Study on the Semantic Network Analysis of Food Tourism through the Big Data (빅데이터를 활용한 음식관광관련 의미연결망 분석의 탐색적 적용)

  • Kim, Hak-Seon
    • Culinary science and hospitality research
    • /
    • v.23 no.4
    • /
    • pp.22-32
    • /
    • 2017
  • The purpose of this study was to explore awareness of food tourism using big data analysis. For this, this study collected data containing 'food tourism' keywords from google web search, google news, and google scholar during one year from January 1 to December 31, 2016. Data were collected by using SCTM (Smart Crawling & Text Mining), a data collecting and processing program. From those data, degree centrality and eigenvector centrality were analyzed by utilizing packaged NetDraw along with UCINET 6. The result showed that the web visibility of 'core service' and 'social marketing' was high. In addition, the web visibility was also high for destination, such as rural, place, ireland and heritage; 'socioeconomic circumstance' related words, such as economy, region, public, policy, and industry. Convergence of iterated correlations showed 4 clustered named 'core service', 'social marketing', 'destinations' and 'social environment'. It is expected that this diagnosis on food tourism according to changes in international business environment by using these web information will be a foundation of baseline data useful for establishing food tourism marketing strategies.

Review of Trends in Wind Energy Research Publications in Journal of the Korean Solar Energy Society (태양에너지학회 논문집의 풍력에너지 연구동향 분석)

  • Kim, Hyun-Goo
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.4
    • /
    • pp.1-11
    • /
    • 2020
  • The Journal of the Korean Solar Energy Society is the first journal in South Korea that adopts wind energy as one of its subjects. Since 2000, more than 140 papers on wind energy have been published in the journal, which accounts for 8.5% of the total publication. However, in recent years, the number of published papers on wind energy has been decreasing steadily, and a reason for this decline is the significant dependence on a few specific institutions and authors. In this study, wind energy subjects were classified using the frequency analysis of the subject words extracted from the title, keywords, and abstract of wind energy papers using the text mining technique. In addition, the Korea Citation Index was used to perform quantitative level evaluation by subject and institution and to analyze the trends and characteristics of the wind energy field. Therefore, it was identified that in terms of the number of publications and citations, the main subject areas were resource/micrositing and policy/potential.

Topic Analysis of Papers of JKIICE Using Text Mining (텍스트 마이닝을 이용한 한국정보통신학회 논문지의 주제 분석)

  • Woo, Young Woon;Cho, Kyoung Won;Lee, KwangEui
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.74-75
    • /
    • 2017
  • In this paper, we analyzed 3,668 papers of JKIICE from 2007 to 2016 using text mining methods for understanding research fields. We used web scraping programs of Python language for data collection, and utilized topic modeling methods based on LDA algorithm implemented by R language. In the results, we verified that representative research areas of JKIICE could be downsized to 9 areas only by the analysis though the submission areas were 19 areas by 2016.

  • PDF

A Text Mining Analysis of HPV Vaccination Research Trends (텍스트마이닝을 활용한 HPV 백신 접종 관련 연구 동향 분석)

  • Son, Yedong;Kang, Hee Sun
    • Child Health Nursing Research
    • /
    • v.25 no.4
    • /
    • pp.458-467
    • /
    • 2019
  • Purpose: The purpose of this study was to identify human papillomavirus (HPV) vaccination research trends by visualizing a keyword network. Methods: Articles about HPV vaccination were retrieved from the PubMed and Web of Science databases. A total of 1,448 articles published in 2006~2016 were selected. Keywords from the abstracts of these articles were extracted using the text mining program WordStat and standardized for analysis. Sixty-four keywords out of 287 were finally chosen after pruning. Social network analysis using NetMiner was applied to analyze the whole keyword network and the betweenness centrality of the network. Results: According to the results of the social network analysis, the central keywords with high betweenness centrality included "health education", "health personnel", "parents", "uptake", "knowledge", and "health promotion". Conclusion: To increase the uptake of HPV vaccination, health personnel should provide health education and vaccine promotion for parents and adolescents. Using social media, governmental organizations can offer accurate information that is easily accessible. School-based education will also be helpful.

A Study on the Development of the Use Index of Closed School Facilities Using Big Data -Focused on Text-Mining Techniques- (빅데이터를 활용한 폐교시설의 지표 개발에 관한 연구 -텍스트마이닝 기법을 중심으로-)

  • Kim, Jae-Young;Lee, Jong-Kuk
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.18 no.2
    • /
    • pp.1-11
    • /
    • 2019
  • The purpose of this study is to make objective decisions in the use of closed schools through the development of utilization indicators for the efficient use of closed schools, which is expected to increase continuously. The research phase was largely carried out by drawing preliminary indicators for use in closed schools, drawing final indicators using big data, and quantifying indicators, and finally objectifying them through quantification. The institution intends to apply and verify the facility based on future indicators. This study has implications for the application of big data analysis methods that have not been attempted in planning and research for the use of closed school facilities to date.

Keywords and Topic Analysis of Social Issues on Twitter Based on Text Mining and Topic Modeling (텍스트 마이닝과 토픽 모델링을 기반으로 한 트위터에 나타난 사회적 이슈의 키워드 및 주제 분석)

  • Kwak, Soo Jeong;Kim, Hyon Hee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.1
    • /
    • pp.13-18
    • /
    • 2019
  • In this study, we investigate important keywords and their relationships among the keywords for social issues, and analyze topics to find subjects of the social issues. In particular, we collected twitter data with the keyword 'metoo' which has attracted much attention in these days, and perform keyword analysis and topic modeling. First, we preprocess the twitter data, identified important keywords, and analyzed the relatedness of the keywords. After then, topic modeling is performed to find subjects related to 'metoo'. Our experimental results showed that relatedness of keywords and subjects on social issues in twitter are well identified based on keyword analysis and topic modeling.