Kyu Won Hwang;Kim Jinkyung;Kang Seung-Koo;Kang Gil Mo
Journal of the Korean Society of Marine Environment & Safety
/
v.29
no.7
/
pp.724-739
/
2023
Located in the sea area between South Korea, North Korea, and China, the Yellow Sea plays an important role from a geopolitical perspective, and recently, as the use of marine space in the Yellow Sea is expanding, its social and economic values have been increasing further. In addition, owing to rapid climate changes, the need for joint response and cooperation between Korea and China is increasing in various fields, including changes in the marine environment and marine ecosystem and generation and movement of air pollutants. Accordingly, in this study, core topics were derived from research papers with the Yellow Sea as a keyword, and research trends to date were explored through author network analysis. As a specific research method, research papers related to the Yellow Sea published between 1984 and 2021 were extracted from the Web of Science database and were classified into four periods to derive core topics using topic modeling, a type of text mining. Furthermore, the influences of major research communities, researchers, and research institutes in the appropriate fields were identified through analyzing the author network, and their implications were presented. The analysis results indicated that the core topics of research papers on the Yellow Sea had changed over time, and differences existed in the influence (centrality) of key researchers. Finally, based on the results of this study, this study aims to identify research trends related to the Yellow Sea, major researchers, and research institutes and contribute to research cooperation between Korea and China regarding the Yellow Sea in the future.
The purpose of this study was to analyze user reviews of running applications using text mining. This study used user reviews of Nike Run Club and Runkeeper in the Google Play Store using the selenium package of python3 as the analysis data, and separated the morphemes by leaving only Korean nouns through the OKT analyzer. After morpheme separation, we created a rankNL dictionary to remove stopwords. To analyze the data, we used TF, TF-IDF and LDA topic modeling in text mining. The results of this study are as follows. First, the keywords 'record', 'app', and 'workout' were identified as the top keywords in the user reviews of Nike Run Club and Runkeeper applications, and there were differences in the rankings of TF and TF-IDF. Second, the LDA topic modeling of Nike Run Club identified the topics of 'basic items', 'additional features', 'errors', and 'location-based data', and the topics of Runkeeper identified the topics of 'errors', 'voice function', 'running data', 'benefits', and 'motivation'. Based on the results, it is recommended that errors and improvements should be made to contribute to the competitiveness of the application.
The proliferation of online reviews on dining experiences has significantly affected consumers' choices of restaurants, especially overseas. Food quality, service, ambiance, and price have been identified as specific attributes for the choice of a restaurant in prior studies. In addition to these four representative attributes, cultural factors, which may also significantly impact the choice of a restaurant for tourists, in particular, have not received much attention in previous studies. This study employs the text mining technique to analyze over 10,000 online reviews of 76 Korean restaurants posted by Chinese tourists on dianping.com to explore the influence of cultural factors on the consumer's choice of restaurants in the overseas travel context. The findings reveal that "Hallyu (Korean Wave)" influences Chinese tourists' dining experiences in Korea and their satisfaction. Moreover, Korean food-related words, such as cold noodle, bibimbap, rice cake, pig trotters, and kimchi stew, appeared across all the review topics. Our findings contribute to the existing tourism and hospitality literature by identifying the critical role of cultural factors on consumers', especially tourists', satisfaction with the choice of a restaurant using text mining. The findings also provide practical guidance to restaurant owners in Korea to attract more Chinese tourists.
E-learning has improved the educational effect by making it possible to learn anytime and anywhere by escaping the traditional infusion education. As the use of e-learning system increases with the increasing popularity of e-learning, it has become important to measure e-learning satisfaction. In this study, we used the mixed research method to identify satisfaction factors of e-learning. The mixed research method is to perform both qualitative research and quantitative research at the same time. As a quantitative research, we collected reviews in Udemy.com by text mining. Then we classified high and low rated lectures and applied topic modeling technique to derive factors from reviews. Also, this study conducted an in-depth 1:1 interview on e-learning learners as a qualitative research. By combining these results, we were able to derive factors of e-learning satisfaction and dissatisfaction. Based on these factors, we suggested ways to improve e-learning satisfaction. In contrast to the fact that survey-based research was mainly conducted in the past, this study collects actual data by text mining. The academic significance of this study is that the results of the topic modeling are combined with the factor based on the information system success model.
The Journal of the Convergence on Culture Technology
/
v.10
no.1
/
pp.539-549
/
2024
This study employed text mining techniques like frequency analysis, word clouds, and LDA topic modeling to assess consumer satisfaction and dissatisfaction with Hyundai Motor Company in the Chinese market, compared to brands such as Toyota, Volkswagen, Buick, and Geely. Focusing on compact vehicles from these brands between 2021 and 2023, this study analyzed customer reviews. The results indicated Hyundai Avante's positive factors, including a long wheelbase. However, it also highlighted dissatisfaction aspects like Manipulate, engine performance, trunk space, chassis and suspension, safety features, quantity and brand of audio speakers, music membership service, separation band, screen reflection, CarLife, and map services. Addressing these issues could significantly enhance Hyundai's competitiveness in the Chinese market. Previous studies mainly focused on literature research and surveys, which only revealed consumer perceptions limited to the variables set by the researchers. This study, through text mining and comparing various car brands, aims to gain a deeper understanding of market trends and consumer preferences, providing useful information for marketing strategies of Hyundai and other brands in the Chinese market.
Dong-Joo Kim;Yong Sung Kwon;Na-Yeon Han;Do-Hun Lee
Korean Journal of Environmental Biology
/
v.41
no.4
/
pp.413-426
/
2023
Species distribution model (SDM) is used to preserve biodiversity and climate change impact. To evaluate biodiversity, various studies are being conducted to utilize and apply SDM. However, there is insufficient research to provide useful information by identifying the current status and recent trends of SDM research and discussing implications for future research. This study analyzed the trends and flow of academic papers, in the use of SDM, published in academic journals in South Korea and provides basic information that can be used for related research in the future. The current state and trends of SDM research were presented using philological methods and text-mining. The papers on SDM have been published 148 times between 1998 and 2023 with 115 (77.7%) papers published since 2015. MaxEnt model was the most widely used, and plant was the main target species. Most of the publications were related to species distribution and evaluation, and climate change. In text mining, the term 'Climate change' emerged as the most frequent keyword and most studies seem to consider biodiversity changes caused by climate change as a topic. In the future, the use of SDM requires several considerations such as selecting the models that are most suitable for various conditions, ensemble models, development of quantitative input variables, and improving the collection system of field survey data. Promoting these methods could help SDM serve as valuable scientific tools for addressing national policy issues like biodiversity conservation and climate change.
This study was conducted in response to the global trend of emphasizing the importance of "everyday landscapes", focusing on the perspective of those who have returned to rural life. With a focus on the case of Gokseong-gun in Jeollanam-do, 460 diaries written by these individuals were collected and analyzed using text mining techniques such as "frequency analysis", "topic modeling", and "sentiment analysis". The analysis of noun morphemes was interpreted from a cognitive aspect, while adjective morphemes were interpreted from an emotional aspect. In particular, this study applied semantic network analysis to overcome the limitations of existing sentiment analysis, and extracted a word network list and examined the content of nouns connected to adjectives that express emotions to identify the targets and contents of sentiments. This method represents a differentiated approach that is not commonly found in existing research. One of the intriguing findings is that the urban-to-rural migrants identified everyday landscapes such as "flowers on neighborhood walking paths", "harvest of a garden", "neighborhood events", and "cozy cafe spaces" as important. These elements all contain visual and enjoyable aspects of everyday landscapes. Currently, many rural villages are attempting to add visual elements to their everyday landscapes by unifying roof colors or painting murals on walls. However, such artificial measures do not necessarily leave a lasting impression on people. A critical review of current policies and systems is necessary. This research is significant because it is the first to study everyday landscapes from the perspective of urban-to-rural migration using diaries and text mining. With a lack of domestic research on everyday landscapes, this study hopes to contribute to the activation of related research in Korea.
All-solid-state batteries are one of the promising candidates for next-generation batteries and are drawing attention as a key component that will lead the future electric vehicle industry. This study analyzes 10,280 comments on Reddit, which is a global social media, in order to identify policy issues and public interest related to all-solid-state batteries from 2016 to 2021. Text mining such as frequency analysis, association rule analysis, and topic modeling, and sentiment analysis are applied to the collected global data to grasp global trends, compare them with the South Korean government's all-solid-state battery development strategy, and suggest policy directions for its national research and development. As a result, the overall sentiment toward all-solid-state battery issues was positive with 50.5% positive and 39.5% negative comments. In addition, as a result of analyzing detailed emotions, it was found that the public had trust and expectation for all-solid-state batteries. However, feelings of concern about unresolved problems coexisted. This study has an academic and practical contribution in that it presented a text mining analysis method for deriving key issues related to all-solid-state batteries, and a more comprehensive trend analysis by employing both a top-down approach based on government policy analysis and a bottom-up approach that analyzes public perception.
This study examined the main factors for activating rural tourism of Jeollabuk-do using big data analysis. The tourism big data was gathered from public open data sources and social network services (SNS), and the analysis tools, 'Opinion Mining', 'Text Mining', and 'Social Network Analysis(SNA)' were used. The opinion mining and text mining analysis identified the key local contents of the 14 areas of Jeollabuk-do and the evaluations of customers on rural tourism. Social network analysis detected the relationships between their contents and determined the importance of the contents. The results of this research showed that each location in Jeollabuk-do had their specific contents attracting visitors and the number of contents affected the scale of tourists. In addition, the number of visitors might be large when their tourism contents were strongly correlated with the other contents. Hence, strong connections among their contents are a point to activate rural tourism. Social network analysis divided the contents into several clusters and derived the eigenvector centralities of the content nodes implying the importance of them in the network. Tourism was active when the nodes at high value of the eigenvector centrality were distributed evenly in every cluster; however the results were contrary when the nodes were located in a few clusters. This study suggests an action plan to extend rural tourism that develop valuable contents and connect the content clusters properly.
Purpose This paper analyzed the impacts of domestic stock market by a global pandemic such as COVID-19. We investigated how the overall pattern of the stock market changed due to the impact of the COVID-19 pandemic. In particular, we analyzed in depth the pattern of stock price, as well, tried to find what factors affect on stock market index(KOSPI) in the healthcare industry due to the COVID-19 pandemic. Design/methodology/approach We built a data warehouse from the databases in various industrial and economic fields to analyze the changes in the KOSPI due to COVID-19, particularly, the changes in the healthcare industry centered on bio-medicine. We collected daily stock price data of the KOSPI centered on the KOSPI-200 about two years before and one year after the outbreak of COVID-19. In addition, we also collected various news related to COVID-19 from the stock market by applying text mining techniques. We designed four experimental data sets to develop decision tree-based prediction models. Findings All prediction models from the four data sets showed the significant predictive power with explainable decision tree models. In addition, we derived significant 10 to 14 decision rules for each prediction model. The experimental results showed that the decision rules were enough to explain the domestic healthcare stock market patterns for before and after COVID-19.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.