• Title/Summary/Keyword: TextMining

Search Result 1,563, Processing Time 0.024 seconds

Prediction of Correct Answer Rate and Identification of Significant Factors for CSAT English Test Based on Data Mining Techniques (데이터마이닝 기법을 활용한 대학수학능력시험 영어영역 정답률 예측 및 주요 요인 분석)

  • Park, Hee Jin;Jang, Kyoung Ye;Lee, Youn Ho;Kim, Woo Je;Kang, Pil Sung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.11
    • /
    • pp.509-520
    • /
    • 2015
  • College Scholastic Ability Test(CSAT) is a primary test to evaluate the study achievement of high-school students and used by most universities for admission decision in South Korea. Because its level of difficulty is a significant issue to both students and universities, the government makes a huge effort to have a consistent difficulty level every year. However, the actual levels of difficulty have significantly fluctuated, which causes many problems with university admission. In this paper, we build two types of data-driven prediction models to predict correct answer rate and to identify significant factors for CSAT English test through accumulated test data of CSAT, unlike traditional methods depending on experts' judgments. Initially, we derive candidate question-specific factors that can influence the correct answer rate, such as the position, EBS-relation, readability, from the annual CSAT practices and CSAT for 10 years. In addition, we drive context-specific factors by employing topic modeling which identify the underlying topics over the text. Then, the correct answer rate is predicted by multiple linear regression and level of difficulty is predicted by classification tree. The experimental results show that 90% of accuracy can be achieved by the level of difficulty (difficult/easy) classification model, whereas the error rate for correct answer rate is below 16%. Points and problem category are found to be critical to predict the correct answer rate. In addition, the correct answer rate is also influenced by some of the topics discovered by topic modeling. Based on our study, it will be possible to predict the range of expected correct answer rate for both question-level and entire test-level, which will help CSAT examiners to control the level of difficulties.

Study on the Current Status of Smart Garden (스마트가든의 인식경향에 관한 연구)

  • Woo, Kyung-Sook;Suh, Joo-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.2
    • /
    • pp.51-60
    • /
    • 2021
  • Modern society is becoming more informed and intelligent with the development of digital technology, in which humans, objects, and networks relate with each other. In accordance with the changing times, a garden system has emerged that makes it easy to supply the ideal temperature, humidity, sunlight, and moisture conditions to grow plants. Therefore, this study attempted to grasp the concept, perception, and trends of smart gardens, a recent concept. To achieve the purpose of this study, previous studies and text mining were used, and the results are as follows. First, the core characteristics of smart gardens are new gardens in which IoT technology and gardening techniques are fused in indoor and outdoor spaces due to technological developments and changes in people's lifestyles. As technology advances and the importance of the environment increases, smart gardens are becoming a reality due to the need for living spaces where humans and nature can co-exist. With the advent of smart gardens, it will be possible to contribute to gardens' vitalization to deal with changes in garden-related industries and people's lifestyles. Second, in current research related to smart gardens and users' experiences, the technical aspects of smart gardens are the most interesting. People value smart garden functions and technical aspects that enable a safe, comfortable, and convenient life, and subjective uses are emerging depending on individual tastes and the comfort with digital devices. Third, looking at the usage behavior of smart gardens, they are mainly used in indoor spaces, with edible plants are being grown. Due to the growing importance of the environment and concerns about climate change and a possible food crisis, the tendency is to prefer the cultivation of plants related to food, but the expansion of garden functions can satisfying users' needs with various technologies that allow for the growing of flowers. In addition, as users feel the shapes of smart gardens are new and sophisticated, it can be seen that design is an essential factor that helps to satisfy users. Currently, smart gardens are developing in terms of technology. However, the main components of the smart garden are the combination of humans, nature, and technology rather than focusing on growing plants conveniently by simply connecting potted plants and smart devices. It strengthens connectivity with various city services and smart homes. Smart gardens interact with the landscape of the architect's ideas rather than reproducing nature through science and technology. Therefore, it is necessary to have a design that considers the functions of the garden and the needs of users. In addition, by providing citizens indoor and urban parks and public facilities, it is possible to share the functions of communication and gardening among generations targeting those who do not enjoy 'smart' services due to age and bridge the digital device and information gap. Smart gardens have potential as a new landscaping space.

Development of Topic Trend Analysis Model for Industrial Intelligence using Public Data (텍스트마이닝을 활용한 공개데이터 기반 기업 및 산업 토픽추이분석 모델 제안)

  • Park, Sunyoung;Lee, Gene Moo;Kim, You-Eil;Seo, Jinny
    • Journal of Technology Innovation
    • /
    • v.26 no.4
    • /
    • pp.199-232
    • /
    • 2018
  • There are increasing needs for understanding and fathoming of business management environment through big data analysis at industrial and corporative level. The research using the company disclosure information, which is comprehensively covering the business performance and the future plan of the company, is getting attention. However, there is limited research on developing applicable analytical models leveraging such corporate disclosure data due to its unstructured nature. This study proposes a text-mining-based analytical model for industrial and firm level analyses using publicly available company disclousre data. Specifically, we apply LDA topic model and word2vec word embedding model on the U.S. SEC data from the publicly listed firms and analyze the trends of business topics at the industrial and corporate levels. Using LDA topic modeling based on SEC EDGAR 10-K document, whole industrial management topics are figured out. For comparison of different pattern of industries' topic trend, software and hardware industries are compared in recent 20 years. Also, the changes of management subject at firm level are observed with comparison of two companies in software industry. The changes of topic trends provides lens for identifying decreasing and growing management subjects at industrial and firm level. Mapping companies and products(or services) based on dimension reduction after using word2vec word embedding model and principal component analysis of 10-K document at firm level in software industry, companies and products(services) that have similar management subjects are identified and also their changes in decades. For suggesting methodology to develop analysis model based on public management data at industrial and corporate level, there may be contributions in terms of making ground of practical methodology to identifying changes of managements subjects. However, there are required further researches to provide microscopic analytical model with regard to relation of technology management strategy between management performance in case of related to various pattern of management topics as of frequent changes of management subject or their momentum. Also more studies are needed for developing competitive context analysis model with product(service)-portfolios between firms.

Evaluation of Preference by Bukhansan Dulegil Course Using Sentiment Analysis of Blog Data (블로그 데이터 감성분석을 통한 북한산둘레길 구간별 선호도 평가)

  • Lee, Sung-Hee;Son, Yong-Hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.3
    • /
    • pp.1-10
    • /
    • 2021
  • This study aimed to evaluate preferences of Bukhansan dulegil using sentiment analysis, a natural language processing technique, to derive preferred and non-preferred factors. Therefore, we collected blog articles written in 2019 and produced sentimental scores by the derivation of positive and negative words in the texts for 21 dulegil courses. Then, content analysis was conducted to determine which factors led visitors to prefer or dislike each course. In blogs written about Bukhansan dulegil, positive words appeared in approximately 73% of the content, and the percentage of positive documents was significantly higher than that of negative documents for each course. Through this, it can be seen that visitors generally had positive sentiments toward Bukhansan dulegil. Nevertheless, according to the sentiment score analysis, all 21 dulegil courses belonged to both the preferred and non-preferred courses. Among courses, visitors preferred less difficult courses, in which they could walk without a burden, and in which various landscape elements (visual, auditory, olfactory, etc.) were harmonious yet distinct. Furthermore, they preferred courses with various landscapes and landscape sequences. Additionally, visitors appreciated the presence of viewpoints, such as observation decks, as a significant factor and preferred courses with excellent accessibility and information provisions, such as information boards. Conversely, the dissatisfaction with the dulegil courses was due to noise caused by adjacent roads, excessive urban areas, and the inequality or difficulty of the course which was primarily attributed to insufficient information on the landscape or section of the course. The results of this study can serve not only serve as a guide in national parks but also in the management of nearby forest green areas to formulate a plan to repair and improve dulegil. Further, the sentiment analysis used in this study is meaningful in that it can continuously monitor actual users' responses towards natural areas. However, since it was evaluated based on a predefined sentiment dictionary, continuous updates are needed. Additionally, since there is a tendency to share positive content rather than negative views due to the nature of social media, it is necessary to compare and review the results of analysis, such as with on-site surveys.

UX Methodology Study by Data Analysis Focusing on deriving persona through customer segment classification (데이터 분석을 통한 UX 방법론 연구 고객 세그먼트 분류를 통한 페르소나 도출을 중심으로)

  • Lee, Seul-Yi;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.151-176
    • /
    • 2021
  • As the information technology industry develops, various kinds of data are being created, and it is now essential to process them and use them in the industry. Analyzing and utilizing various digital data collected online and offline is a necessary process to provide an appropriate experience for customers in the industry. In order to create new businesses, products, and services, it is essential to use customer data collected in various ways to deeply understand potential customers' needs and analyze behavior patterns to capture hidden signals of desire. However, it is true that research using data analysis and UX methodology, which should be conducted in parallel for effective service development, is being conducted separately and that there is a lack of examples of use in the industry. In thiswork, we construct a single process by applying data analysis methods and UX methodologies. This study is important in that it is highly likely to be used because it applies methodologies that are actively used in practice. We conducted a survey on the topic to identify and cluster the associations between factors to establish customer classification and target customers. The research methods are as follows. First, we first conduct a factor, regression analysis to determine the association between factors in the happiness data survey. Groups are grouped according to the survey results and identify the relationship between 34 questions of psychological stability, family life, relational satisfaction, health, economic satisfaction, work satisfaction, daily life satisfaction, and residential environment satisfaction. Second, we classify clusters based on factors affecting happiness and extract the optimal number of clusters. Based on the results, we cross-analyzed the characteristics of each cluster. Third, forservice definition, analysis was conducted by correlating with keywords related to happiness. We leverage keyword analysis of the thumb trend to derive ideas based on the interest and associations of the keyword. We also collected approximately 11,000 news articles based on the top three keywords that are highly related to happiness, then derived issues between keywords through text mining analysis in SAS, and utilized them in defining services after ideas were conceived. Fourth, based on the characteristics identified through data analysis, we selected segmentation and targetingappropriate for service discovery. To this end, the characteristics of the factors were grouped and selected into four groups, and the profile was drawn up and the main target customers were selected. Fifth, based on the characteristics of the main target customers, interviewers were selected and the In-depthinterviews were conducted to discover the causes of happiness, causes of unhappiness, and needs for services. Sixth, we derive customer behavior patterns based on segment results and detailed interviews, and specify the objectives associated with the characteristics. Seventh, a typical persona using qualitative surveys and a persona using data were produced to analyze each characteristic and pros and cons by comparing the two personas. Existing market segmentation classifies customers based on purchasing factors, and UX methodology measures users' behavior variables to establish criteria and redefine users' classification. Utilizing these segment classification methods, applying the process of producinguser classification and persona in UX methodology will be able to utilize them as more accurate customer classification schemes. The significance of this study is summarized in two ways: First, the idea of using data to create a variety of services was linked to the UX methodology used to plan IT services by applying it in the hot topic era. Second, we further enhance user classification by applying segment analysis methods that are not currently used well in UX methodologies. To provide a consistent experience in creating a single service, from large to small, it is necessary to define customers with common goals. To this end, it is necessary to derive persona and persuade various stakeholders. Under these circumstances, designing a consistent experience from beginning to end, through fast and concrete user descriptions, would be a very effective way to produce a successful service.

Analysis of Social Trends for Electric Scooters Using Dynamic Topic Modeling and Sentiment Analysis (동적 토픽 모델링과 감성 분석을 활용한 전동킥보드에 대한 사회적 동향 분석)

  • Kyoungok, Kim;Yerang, Shin
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.1
    • /
    • pp.19-30
    • /
    • 2023
  • An electric scooter(e-scooter), one popularized micro-mobility vehicle has shown rapidly increasing use in many cities. In South Korea, the use of e-scooters has greatly increased, as some companies have launched e-scooter sharing services in a few large cities, starting with Seoul in 2018. However, the use of e-scooters is still controversial because of issues such as parking and safety. Since the perception toward the means of transportation affects the mode choice, it is necessary to track the trends for electric scooters to make the use of e-scooters more active. Hence, this study aimed to analyze the trends related to e-scooters. For this purpose, we analyzed news articles related to e-scooters published from 2014 to 2020 using dynamic topic modeling to extract issues and sentiment analysis to investigate how the degree of positive and negative opinions in news articles had changed. As a result of topic modeling, it was possible to extract three different topics related to micro-mobility technologies, shared e-scooter services, and regulations for micro-mobility, and the proportion of the topic for regulations for micro-mobility increased as shared e-scooter services increased in recent years. In addition, the top positive words included quick, enjoyable, and easy, whereas the top negative words included threat, complaint, and ilegal, which implies that people satisfied with the convenience of e-scooter or e-scooter sharing services, but safety and parking issues should be addressed for micro-mobility services to become more active. In conclusion, this study was able to understand how issues and social trends related to e-scooters have changed, and to determine the issues that need to be addressed. Moreover, it is expected that the research framework using dynamic topic modeling and sentiment analysis will be helpful in determining social trends on various areas.

A Study on the Landscape Cognition of Wind Power Plant in Social Media (소셜미디어에 나타난 풍력발전시설의 경관 인식 연구)

  • Woo, Kyung-Sook;Suh, Joo-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.5
    • /
    • pp.69-79
    • /
    • 2022
  • This study aims to assess the current understanding of the landscape of wind power facilities as renewable energy sources that supply sightseeing, tourism, and other opportunities. Therefore, social media data related to the landscape of wind power facilities experienced by visitors from different regions was analyzed. The analysis results showed that the common characteristics of the landscape of wind power facilities are based on the scale of wind power facilities, the distance between overlook points of wind power facilities, the visual openness of the wind power facilities from the overlook points, and the terrain where the wind power facilities are located. In addition, the preference for wind power facilities is higher in places where the shape of wind power facilities and the surrounding landscape can be clearly seen- flat ground or the sea are considered better landscapes. Negative keywords about the landscape appear on Gade Mountain in Taibai, Meifeng Mountain in Taibai, Taiqi Mountain, and Gyeongju Wind Power Generation Facilities on Gyeongshang Road in Gangwon. The keyword 'negation' occurs when looking at wind power facilities at close range. Because of the high angle of the view, viewers can feel overwhelmed seeing the size of the facility and the ridge simultaneously, feeling psychological pressure. On the contrary, positive landscape adjectives are obtained from wind power facilities on flat ground or the sea. Visitors think that the visual volume of the landscape is fully ensured on flat ground or the sea, and it is a symbolic element that can represent the site. This study analyzes landscape awareness based on the opinions of visitors who have experienced wind power facilities. However, wind power facilities are built in different areas. Therefore, landscape characteristics are different, and there are many variables, such as viewpoints and observers, so the research results are difficult to popularize and have limitations. In recent years, landscape damage due to the construction of wind power facilities has become a hot issue, and the domestic methods of landscape evaluation of wind power facilities are unsatisfactory. Therefore, when evaluating the landscape of wind power facilities, the scale of wind power facilities, the inherent natural characteristics of the area where wind power facilities are set up, and the distance between wind power facilities and overlook points are important elements to consider. In addition, wind power facilities are set in the natural environment, which needs to be protected. Therefore, from the landscape perspective, it is necessary to study the landscape of wind power facilities and the surrounding environment.

Asbestos Trend in Korea from 1918 to 2027 Using Text Mining Techniques in a Big Data Environment (빅데이터환경에서 텍스트마이닝 기법을 활용한 한국의 석면 트렌드 (1918년~2027년))

  • Yul Roh;Hyeonyi Jeong;Byungno Park;Chaewon Kim;Yumi Kim;Mina Seo;Haengsoo Shin;Hyunwook Kim;Yeji Sung
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.457-473
    • /
    • 2023
  • Asbestos has been produced, imported and used in various industries in Korea over the past decades. Since asbestos causes fatal diseases such as malignant mesothelioma and lung cancer, the use of asbestos has been generally banned in Korea since 2009. However, there are still many asbestos-containing materials around us, and safe management is urgently needed. This study aims to examine asbestos-related trend changes using major asbestos-related keywords based on the asbestos trend analysis using big data for the past 32 years (1991 to 2022) in Korea. In addition, we reviewed both domestic trends related to the production, import, and use of asbestos before 1990 and asbestos-related policies from 2023 to 2027. From 1991 to 2000, main keywords related to asbestos were research, workers, carcinogens, and the environment because the carcinogenicity of asbestos was highlighted due to domestic production, import, and use of asbestos. From 2001 to 2010, the main keywords related to asbestos were lung cancer, litigation, carcinogens, exposure, and companies because lawsuits were initiated in the US and Japan in relation to carcinogenicity due to asbestos. From 2011 to 2020, the high ranking keywords related to asbestos were carcinogen, baseball field, school, slate, building, and abandoned asbestos mine due to the seriousness of the asbestos problem in Korea. From 2021 to present (2023), the main search keywords related to asbestos such as school, slate (asbestos cement), buildings, landscape stone, environmental impact assessment, apartment, and cement appeared.

Analysis on Dynamics of Korea Startup Ecosystems Based on Topic Modeling (토픽 모델링을 활용한 한국의 창업생태계 트렌드 변화 분석)

  • Heeyoung Son;Myungjong Lee;Youngjo Byun
    • Knowledge Management Research
    • /
    • v.23 no.4
    • /
    • pp.315-338
    • /
    • 2022
  • In 1986, Korea established legal systems to support small and medium-sized start-ups, which becomes the main pillars of national development. The legal systems have stimulated start-up ecosystems to have more than 1 million new start-up companies founded every year during the past 30 years. To analyze the trend of Korea's start-up ecosystem, in this study, we collected 1.18 million news articles from 1991 to 2020. Then, we extracted news articles that have the keywords "start-up", "venture", and "start-up". We employed network analysis and topic modeling to analyze collected news articles. Our analysis can contribute to analyzing the government policy direction shown in the history of start-up support policy. Specifically, our analysis identifies the dynamic characteristics of government influenced by external environmental factors (e.g., society, economy, and culture). The results of our analysis suggest that the start-up ecosystems in Korea have changed and developed mainly by the government policies for corporation governance, industrial development planning, deregulation, and economic prosperity plan. Our frequency keyword analysis contributes to understanding entrepreneurial productivity attributed to activities among the networked components in industrial ecosystems. Our analyses and results provide practitioners and researchers with practical and academic implications that can help to establish dedicated support policies through forecast tasks of the economic environment surrounding the start-ups. Korean entrepreneurial productivity has been empowered by growing numbers of large companies in the mobile phone industry. The spectrum of large companies incorporates content startups, platform providers, online shopping malls, and youth-oriented start-ups. In addition, economic situational factors contribute to the growth of Korean entrepreneurial productivity the economic, which are related to the global expansions of the mobile industry, and government efforts to foster start-ups. Our research is methodologically implicative. We employ natural language processes for 30 years of media articles, which enables more rigorous analysis compared to the existing studies which only observe changes in government and policy based on a qualitative manner.

History and Characteristics of Risk Perception and Response Related to Science: Focused on Blood Pressure (과학에 관련된 위험 인식과 대응의 역사와 특징 -혈압을 중심으로-)

  • Wonbin Jang;Minchul Kim
    • Journal of The Korean Association For Science Education
    • /
    • v.43 no.6
    • /
    • pp.549-562
    • /
    • 2023
  • The current society is in the VUCA era, where various risks produced by humans are spread along with the development of science and technology. There is a need to increase the level of risk literacy of citizens to strengthen their daily preparedness to respond to these risks. For this on, it is necessary to reconsider the role of science education so that risks can be perceived and responded to scientifically and objectively. Accordingly, in order to investigate the role of science education in a risk society, this study reviewed the history of risk perception and response related to science and analyzed its characteristics. In this process, perception and response to risks arising from blood pressure were analyzed in three contexts (historical context, curriculum context, textbook context). For historical context, journals registered in SCIE were selected as research subjects among journals where research related to the history of knowledge of the heart and cardiovascular system was conducted. Papers with the keywords 'hypertension' and 'history' were selected from the journals, and changes in perception and responses related to blood pressure were compared and analyzed by period. The curriculum context is analyzed from the 1st national curriculum to the 2022 revised curriculum, and content elements and achievement standard related to blood pressure were compared and analyzed. It was confirmed that risks arising from blood pressure were not included from the 1st to the 6th national curriculum, and that risks arising from blood pressure were included from the 7th national curriculum (excluding the 2009 revised curriculum). For the textbook context, the 7th national curriculum BiologyⅠ, the 2015 revised curriculum Life ScienceⅠ, and Health were selected, and through text mining, keywords that representing curriculums and textbooks were selected, and the presentation of risk perception and response was analyzed based on the keywords. And by analyzing the figures and tables presented in the textbook, the characteristics of risk perception and risk response were derived. This study is meaningful in that it was able to confirm the role of risk perception and response in science education.