• Title/Summary/Keyword: TextMining

Search Result 1,563, Processing Time 0.025 seconds

Multi-Dimensional Analysis Method of Product Reviews for Market Insight (마켓 인사이트를 위한 상품 리뷰의 다차원 분석 방안)

  • Park, Jeong Hyun;Lee, Seo Ho;Lim, Gyu Jin;Yeo, Un Yeong;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.57-78
    • /
    • 2020
  • With the development of the Internet, consumers have had an opportunity to check product information easily through E-Commerce. Product reviews used in the process of purchasing goods are based on user experience, allowing consumers to engage as producers of information as well as refer to information. This can be a way to increase the efficiency of purchasing decisions from the perspective of consumers, and from the seller's point of view, it can help develop products and strengthen their competitiveness. However, it takes a lot of time and effort to understand the overall assessment and assessment dimensions of the products that I think are important in reading the vast amount of product reviews offered by E-Commerce for the products consumers want to compare. This is because product reviews are unstructured information and it is difficult to read sentiment of reviews and assessment dimension immediately. For example, consumers who want to purchase a laptop would like to check the assessment of comparative products at each dimension, such as performance, weight, delivery, speed, and design. Therefore, in this paper, we would like to propose a method to automatically generate multi-dimensional product assessment scores in product reviews that we would like to compare. The methods presented in this study consist largely of two phases. One is the pre-preparation phase and the second is the individual product scoring phase. In the pre-preparation phase, a dimensioned classification model and a sentiment analysis model are created based on a review of the large category product group review. By combining word embedding and association analysis, the dimensioned classification model complements the limitation that word embedding methods for finding relevance between dimensions and words in existing studies see only the distance of words in sentences. Sentiment analysis models generate CNN models by organizing learning data tagged with positives and negatives on a phrase unit for accurate polarity detection. Through this, the individual product scoring phase applies the models pre-prepared for the phrase unit review. Multi-dimensional assessment scores can be obtained by aggregating them by assessment dimension according to the proportion of reviews organized like this, which are grouped among those that are judged to describe a specific dimension for each phrase. In the experiment of this paper, approximately 260,000 reviews of the large category product group are collected to form a dimensioned classification model and a sentiment analysis model. In addition, reviews of the laptops of S and L companies selling at E-Commerce are collected and used as experimental data, respectively. The dimensioned classification model classified individual product reviews broken down into phrases into six assessment dimensions and combined the existing word embedding method with an association analysis indicating frequency between words and dimensions. As a result of combining word embedding and association analysis, the accuracy of the model increased by 13.7%. The sentiment analysis models could be seen to closely analyze the assessment when they were taught in a phrase unit rather than in sentences. As a result, it was confirmed that the accuracy was 29.4% higher than the sentence-based model. Through this study, both sellers and consumers can expect efficient decision making in purchasing and product development, given that they can make multi-dimensional comparisons of products. In addition, text reviews, which are unstructured data, were transformed into objective values such as frequency and morpheme, and they were analysed together using word embedding and association analysis to improve the objectivity aspects of more precise multi-dimensional analysis and research. This will be an attractive analysis model in terms of not only enabling more effective service deployment during the evolving E-Commerce market and fierce competition, but also satisfying both customers.

The Empirical Study on the Effect of Technology Exchanges in the Fourth Industrial Revolution between Korea and China: Focused on the Firm Social Network Analysis (한중 4차산업혁명 기술교류 및 효과에 대한 실증연구: 기업 소셜 네트워크 분석 중심으로)

  • Zhou, Zhenxin;Sohn, Kwonsang;Hwang, Yoon Min;Kwon, Ohbyung
    • The Journal of Society for e-Business Studies
    • /
    • v.25 no.3
    • /
    • pp.41-61
    • /
    • 2020
  • China's rapid development and commercialization of high-tech technologies in the fourth industrial revolution has led to effective technology exchanges between Korean and Chinese firms becoming more important to Korea's mid-term and long-term industrial development. However, there is still a lack of empirical research on how technology exchanges between Korean and Chinese firms proceed and their effectiveness. In response, this study conducted a social network analysis based on text mining data of Korea-China business technology exchange and cooperation articles introduced in the news from 2018 to March 2020 on the current status and effects of Korea-China technology exchanges related to the fourth industrial revolution, and conducted a regression analysis how network centrality effect on the firm performance. According to the results, most of the Korean major electronic firms are actively networking with Chinese firms and institutions, showing high centrality in the centrality index. Korean telecommunication firms showed high betweenness centrality and subgraph centrality, and Korean Internet service providers and broadcasting contents firms showed high eigenvector centrality. In addition, Chinese firms showed higher betweenness centrality than Korean firms, and Chinese service firms showed higher closeness centrality than manufacturing firms. As a result of regression analysis, this network centrality had a positive effect on firm performance. To the best of our knowledge, this is the first to analyze the impact of the technical cooperation between Korean and Chinese firms under the fourth industrial revolution context. This study has theoretical implications that suggested the direction of social network analysis-based empirical research in global firm cooperation. Also, this study has practical implications that the guidelines for network analysis in setting the direction of technical cooperation between Korea and China by firms or governments.

A Study on the Research Trends in Library & Information Science in Korea using Topic Modeling (토픽모델링을 활용한 국내 문헌정보학 연구동향 분석)

  • Park, Ja-Hyun;Song, Min
    • Journal of the Korean Society for information Management
    • /
    • v.30 no.1
    • /
    • pp.7-32
    • /
    • 2013
  • The goal of the present study is to identify the topic trend in the field of library and information science in Korea. To this end, we collected titles and s of the papers published in four major journals such as Journal of the Korean Society for information Management, Journal of the Korean Society for Library and Information Science, Journal of Korean Library and Information Science Society, and Journal of the Korean BIBLIA Society for library and Information Science during 1970 and 2012. After that, we applied the well-received topic modeling technique, Latent Dirichlet Allocation(LDA), to the collected data sets. The research findings of the study are as follows: 1) Comparison of the extracted topics by LDA with the subject headings of library and information science shows that there are several distinct sub-research domains strongly tied with the field. Those include library and society in the domain of "introduction to library and information science," professionalism, library and information policy in the domain of "library system," library evaluation in the domain of "library management," collection development and management, information service in the domain of "library service," services by library type, user training/information literacy, service evaluation, classification/cataloging/meta-data in the domain of "document organization," bibliometrics/digital libraries/user study/internet/expert system/information retrieval/information system in the domain of "information science," antique documents in the domain of "bibliography," books/publications in the domain of "publication," and archival study. The results indicate that among these sub-domains, information science and library services are two most focused domains. Second, we observe that there is the growing trend in the research topics such as service and evaluation by library type, internet, and meta-data, but the research topics such as book, classification, and cataloging reveal the declining trend. Third, analysis by journal show that in Journal of the Korean Society for information Management, information science related topics appear more frequently than library science related topics whereas library science related topics are more popular in the other three journals studied in this paper.

Measuring the Economic Impact of Item Descriptions on Sales Performance (온라인 상품 판매 성과에 영향을 미치는 상품 소개글 효과 측정 기법)

  • Lee, Dongwon;Park, Sung-Hyuk;Moon, Songchun
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.1-17
    • /
    • 2012
  • Personalized smart devices such as smartphones and smart pads are widely used. Unlike traditional feature phones, theses smart devices allow users to choose a variety of functions, which support not only daily experiences but also business operations. Actually, there exist a huge number of applications accessible by smart device users in online and mobile application markets. Users can choose apps that fit their own tastes and needs, which is impossible for conventional phone users. With the increase in app demand, the tastes and needs of app users are becoming more diverse. To meet these requirements, numerous apps with diverse functions are being released on the market, which leads to fierce competition. Unlike offline markets, online markets have a limitation in that purchasing decisions should be made without experiencing the items. Therefore, online customers rely more on item-related information that can be seen on the item page in which online markets commonly provide details about each item. Customers can feel confident about the quality of an item through the online information and decide whether to purchase it. The same is true of online app markets. To win the sales competition against other apps that perform similar functions, app developers need to focus on writing app descriptions to attract the attention of customers. If we can measure the effect of app descriptions on sales without regard to the app's price and quality, app descriptions that facilitate the sale of apps can be identified. This study intends to provide such a quantitative result for app developers who want to promote the sales of their apps. For this purpose, we collected app details including the descriptions written in Korean from one of the largest app markets in Korea, and then extracted keywords from the descriptions. Next, the impact of the keywords on sales performance was measured through our econometric model. Through this analysis, we were able to analyze the impact of each keyword itself, apart from that of the design or quality. The keywords, comprised of the attribute and evaluation of each app, are extracted by a morpheme analyzer. Our model with the keywords as its input variables was established to analyze their impact on sales performance. A regression analysis was conducted for each category in which apps are included. This analysis was required because we found the keywords, which are emphasized in app descriptions, different category-by-category. The analysis conducted not only for free apps but also for paid apps showed which keywords have more impact on sales performance for each type of app. In the analysis of paid apps in the education category, keywords such as 'search+easy' and 'words+abundant' showed higher effectiveness. In the same category, free apps whose keywords emphasize the quality of apps showed higher sales performance. One interesting fact is that keywords describing not only the app but also the need for the app have asignificant impact. Language learning apps, regardless of whether they are sold free or paid, showed higher sales performance by including the keywords 'foreign language study+important'. This result shows that motivation for the purchase affected sales. While item reviews are widely researched in online markets, item descriptions are not very actively studied. In the case of the mobile app markets, newly introduced apps may not have many item reviews because of the low quantity sold. In such cases, item descriptions can be regarded more important when customers make a decision about purchasing items. This study is the first trial to quantitatively analyze the relationship between an item description and its impact on sales performance. The results show that our research framework successfully provides a list of the most effective sales key terms with the estimates of their effectiveness. Although this study is performed for a specified type of item (i.e., mobile apps), our model can be applied to almost all of the items traded in online markets.

A Study on Automatic Classification Model of Documents Based on Korean Standard Industrial Classification (한국표준산업분류를 기준으로 한 문서의 자동 분류 모델에 관한 연구)

  • Lee, Jae-Seong;Jun, Seung-Pyo;Yoo, Hyoung Sun
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.221-241
    • /
    • 2018
  • As we enter the knowledge society, the importance of information as a new form of capital is being emphasized. The importance of information classification is also increasing for efficient management of digital information produced exponentially. In this study, we tried to automatically classify and provide tailored information that can help companies decide to make technology commercialization. Therefore, we propose a method to classify information based on Korea Standard Industry Classification (KSIC), which indicates the business characteristics of enterprises. The classification of information or documents has been largely based on machine learning, but there is not enough training data categorized on the basis of KSIC. Therefore, this study applied the method of calculating similarity between documents. Specifically, a method and a model for presenting the most appropriate KSIC code are proposed by collecting explanatory texts of each code of KSIC and calculating the similarity with the classification object document using the vector space model. The IPC data were collected and classified by KSIC. And then verified the methodology by comparing it with the KSIC-IPC concordance table provided by the Korean Intellectual Property Office. As a result of the verification, the highest agreement was obtained when the LT method, which is a kind of TF-IDF calculation formula, was applied. At this time, the degree of match of the first rank matching KSIC was 53% and the cumulative match of the fifth ranking was 76%. Through this, it can be confirmed that KSIC classification of technology, industry, and market information that SMEs need more quantitatively and objectively is possible. In addition, it is considered that the methods and results provided in this study can be used as a basic data to help the qualitative judgment of experts in creating a linkage table between heterogeneous classification systems.

Online news-based stock price forecasting considering homogeneity in the industrial sector (산업군 내 동질성을 고려한 온라인 뉴스 기반 주가예측)

  • Seong, Nohyoon;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.1-19
    • /
    • 2018
  • Since stock movements forecasting is an important issue both academically and practically, studies related to stock price prediction have been actively conducted. The stock price forecasting research is classified into structured data and unstructured data, and it is divided into technical analysis, fundamental analysis and media effect analysis in detail. In the big data era, research on stock price prediction combining big data is actively underway. Based on a large number of data, stock prediction research mainly focuses on machine learning techniques. Especially, research methods that combine the effects of media are attracting attention recently, among which researches that analyze online news and utilize online news to forecast stock prices are becoming main. Previous studies predicting stock prices through online news are mostly sentiment analysis of news, making different corpus for each company, and making a dictionary that predicts stock prices by recording responses according to the past stock price. Therefore, existing studies have examined the impact of online news on individual companies. For example, stock movements of Samsung Electronics are predicted with only online news of Samsung Electronics. In addition, a method of considering influences among highly relevant companies has also been studied recently. For example, stock movements of Samsung Electronics are predicted with news of Samsung Electronics and a highly related company like LG Electronics.These previous studies examine the effects of news of industrial sector with homogeneity on the individual company. In the previous studies, homogeneous industries are classified according to the Global Industrial Classification Standard. In other words, the existing studies were analyzed under the assumption that industries divided into Global Industrial Classification Standard have homogeneity. However, existing studies have limitations in that they do not take into account influential companies with high relevance or reflect the existence of heterogeneity within the same Global Industrial Classification Standard sectors. As a result of our examining the various sectors, it can be seen that there are sectors that show the industrial sectors are not a homogeneous group. To overcome these limitations of existing studies that do not reflect heterogeneity, our study suggests a methodology that reflects the heterogeneous effects of the industrial sector that affect the stock price by applying k-means clustering. Multiple Kernel Learning is mainly used to integrate data with various characteristics. Multiple Kernel Learning has several kernels, each of which receives and predicts different data. To incorporate effects of target firm and its relevant firms simultaneously, we used Multiple Kernel Learning. Each kernel was assigned to predict stock prices with variables of financial news of the industrial group divided by the target firm, K-means cluster analysis. In order to prove that the suggested methodology is appropriate, experiments were conducted through three years of online news and stock prices. The results of this study are as follows. (1) We confirmed that the information of the industrial sectors related to target company also contains meaningful information to predict stock movements of target company and confirmed that machine learning algorithm has better predictive power when considering the news of the relevant companies and target company's news together. (2) It is important to predict stock movements with varying number of clusters according to the level of homogeneity in the industrial sector. In other words, when stock prices are homogeneous in industrial sectors, it is important to use relational effect at the level of industry group without analyzing clusters or to use it in small number of clusters. When the stock price is heterogeneous in industry group, it is important to cluster them into groups. This study has a contribution that we testified firms classified as Global Industrial Classification Standard have heterogeneity and suggested it is necessary to define the relevance through machine learning and statistical analysis methodology rather than simply defining it in the Global Industrial Classification Standard. It has also contribution that we proved the efficiency of the prediction model reflecting heterogeneity.

Consumers Perceptions on Monosodium L-glutamate in Social Media (소셜미디어 분석을 통한 소비자들의 L-글루타민산나트륨에 대한 인식 조사)

  • Lee, Sooyeon;Lee, Wonsung;Moon, Il-Chul;Kwon, Hoonjeong
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.3
    • /
    • pp.153-166
    • /
    • 2016
  • The purpose of this study was to investigate consumers' perceptions on monosodium L-glutamate (MSG) in social media. Data were collected from Naver blogs and Naver web communities (Korean representative portal web-site), and media reports including comment sections on a Yonhap news website (Korean largest news agency). The results from Naver blogs and Naver web communities showed that it was primarily mentioned MSG-use restaurant reviews, 'MSG-no added' products, its safety, and methods of reducing MSG in food. When TV shows on current affairs, newspaper, or TV news reported uses and side effects of MSG, search volume for MSG has increased in both PC and mobile search engines. Search volume has increased especially when TV shows on current affairs reported it. There are more periods with increased search volume for Mobile than PC. Also, it was mainly commented about safety of MSG, criticism of low-quality foods, abuse of MSG, and distrust of government below the news on the Yonhap news site. The label of MSG-no added products in market emphasized "MSG-free" even though it is allocated as an acceptable daily intake (ADI) not-specified by the Joint FAO/WHO Expert Committee on Food Additives (JECFA). When consumers search for MSG (monosodium L-glutamate) or purchase food on market, they might perceive that 'MSG-no added' products are better. Competent authorities, offices of education and local government provide guidelines based on no added MSG principle and these policies might affect consumers' perceptions. TV program or news program could be a powerful and effective consumer communication channel about MSG through Mobile rather than PC. Therefore media including TV should report item on monosodium L-glutamate with responsibility and information based on scientific background for consumers to get reliable information.

Research Trends on Soil Erosion Control Engineering in North Korea (북한의 사방공학 분야 연구동향 분석)

  • Kim, Kidae;Kang, Minjeng;Kim, Dongyeob;Lee, Changwoo;Woo, Choongshik;Seo, Junpyo
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.4
    • /
    • pp.469-483
    • /
    • 2019
  • North Korea has experienced floods and sediment-related disasters annually since the 1970s due to deforestation. It is of paramount importance that technologies and trends related to forest restoration and soil erosion control engineering be properly understood in a bid to reduce damage from sediment-related disasters in North Korea, and to effect national territorial management following unification. This paper presents a literature review and bibliometric analysis including 146 related articles published in North Korea. First, we analyzed the textual characteristics of the articles. We then employed the VOSviewer software package to classify the research topic and analyzed this topic based on the time change. The results showed that articles on the topic have consistently increased since the 1990s. In addition, research related to soil erosion control engineering has been classified into four subjects in North Korea: (i) assessment of hazard area on soil erosion and soil loss, sediment related-disasters; (ii) hydraulic and hydrologic understanding of forests; (iii) reasonable construction of soil erosion control structures; and (iv) effects and management plan of soil erosion control works. The proportion of research related to the (ii) hydraulic and hydrologic understanding of forests had been significant during the reign of Kim Ilsung. However, the proportion of research related to the (i) assessment of hazard area on soil erosion and soil loss, sediment-related disasters, increased during the reign of Kim Jongil and Kim Jongun. Using these results, our analysis indicated that an interest in and need for soil erosion control engineering in North Korea has continually increased. The results of this study are expected to serve as a basis for preparing forestry cooperation between North and South Korea, and to serve as essential data for better understanding soil erosion control engineering in North Korea.

Revisiting the cause of unemployment problem in Korea's labor market: The job seeker's interests-based topic analysis (취업준비생 토픽 분석을 통한 취업난 원인의 재탐색)

  • Kim, Jung-Su;Lee, Suk-Jun
    • Management & Information Systems Review
    • /
    • v.35 no.1
    • /
    • pp.85-116
    • /
    • 2016
  • The present study aims to explore the causes of employment difficulty on the basis of job applicant's interest from P-E (person-environment) fit perspective. Our approach relied on a textual analytic method to reveal insights from their situational interests in a job search during the change of labor market. Thus, to investigate the type of major interests and psychological responses, user-generated texts in a social community were collected for analysis between January 1, 2013 through December 31, 2015 by crawling the online-community in regard to job seeking and sharing information and opinions. The results of topic analysis indicated user's primary interests were divided into four types: perception of vocation expectation, employment pre-preparation behaviors, perception of labor market, and job-seeking stress. Specially, job applicants put mainly concerns of monetary reward and a form of employment, rather than their work values or career exploration, thus youth job applicants expressed their psychological responses using contextualized language (e.g., slang, vulgarisms) for projecting their unstable state under uncertainty in response to environmental changes. Additionally, they have perceived activities in the restricted preparation (e.g., certification, English exam) as determinant factors for success in employment and suffered form job-seeking stress. On the basis of these findings, current unemployment matters are totally attributed to the absence of pursing the value of vocation and job in individuals, organizations, and society. Concretely, job seekers are preoccupied with occupational prestige in social aspect and have undecided vocational value. On the other hand, most companies have no perception of the importance of human resources and have overlooked the needs for proper work environment development in respect of stimulating individual motivation. The attempt in this study to reinterpret the effect of environment as for classifying job applicant's interests in reference to linguistic and psychological theories not only helps conduct a more comprehensive meaning for understanding social matters, but guides new directions for future research on job applicant's psychological factors (e.g., attitudes, motivation) using topic analysis.

  • PDF

A Study on the Essence and Tendency of Modern Manager (현대 경영자로서의 본질과 성향 연구)

  • Yeom, Bae-Hoon;Kim, Hyunsoo
    • Journal of Service Research and Studies
    • /
    • v.10 no.3
    • /
    • pp.23-42
    • /
    • 2020
  • This study conceptualized the essence and propensity of modern management in service age, based on philosophy, and developed items to evaluate the conceptualized content. It was carried out as a new study to deepen the study of management philosophy and management theory by the new management framework. In order to establish the philosophical foundation of the modern management, the essence of the modern management was conceptualized based on the fundamental ideas of the East and West, and then an evaluation item was developed to put the essence and propensity of the modern management into practical use through analytical and empirical methods. After analyzing the representative ideas of mankind, it was derived that the Book of Change has the qualification as a philosophical model that can derive the essence of modern management. The Book of Change explains the reasoning of the world in the structure of two opposing parties, such as Taiji or Yin and Yang, and the process of acknowledging the contradictions within each opposing party and overcoming the contradictions through change is the central idea. Because you can see. After conducting a conceptual study, through empirical research, the essence and propensity of a modern manager should be conceptualized. The concept of essence and empirical study of the modern management using the leading role was conducted in two stages. First, a qualitative study using repetitive comparative analysis (CCM), focus group interview (FGI), and text mining was conducted to derive the essential and propensity conceptualization items that modern managers should possess. In addition, a quantitative study using factor analysis to develop sample items and develop measurement items through literature review and FGI was conducted to derive the essential concept of the modern management. Finally, the essence of modern management was derived: learning, preparation, challenge, inclusion, trust, morality, and sacrifice. In the future, it is necessary to conduct empirical research on the effectiveness of the essence of modern management for global and Korean representative companies.