• Title/Summary/Keyword: TextMining

Search Result 1,563, Processing Time 0.03 seconds

A Gap Analysis Using Spatial Data and Social Media Big Data Analysis Results of Island Tourism Resources for Sustainable Resource Management (지속가능한 자원관리를 위한 섬 지역 관광자원의 공간정보와 소셜미디어 빅데이터 분석 결과를 활용한 격차분석)

  • Lee, Sung-Hee;Lee, Ju-Kyung;Son, Yong-Hoon;Kim, Young-Jin
    • Journal of Korean Society of Rural Planning
    • /
    • v.30 no.2
    • /
    • pp.13-24
    • /
    • 2024
  • This study conducts an analysis of social media big data pertaining to island tourism resources, aiming to discern the diverse forms and categories of island tourism favored by consumers, ascertain predominant resources, and facilitate objective decision-making grounded in scientific methodologies. To achieve this objective, an examination of blog posts published on Naver from 2022 to 2023 was undertaken, utilizing keywords such as 'Island tourism', 'Island travel', and 'Island backpacking' as focal points for analysis. Text mining techniques were applied to sift through the data. Among the resources identified, the port emerged as a significant asset, serving as a pivotal conduit linking the island and mainland and holding substantial importance as a focal point and resource for tourist access to the island. Furthermore, an analysis of the disparity between existing island tourism resources and those acknowledged by tourists who actively engage with and appreciate island destinations led to the identification of 186 newly emerging resources. These nascent resources predominantly clustered within five regions: Incheon Metropolitan City, Tongyeong/Geoje City, Jeju Island, Ulleung-gun, and Shinan-gun. A scrutiny of these resources, categorized according to the tourism resource classification system, revealed a notable presence of new resources, chiefly in the domains of 'rural landscape', 'tourist resort/training facility', 'transportation facility', and 'natural resource'. Notably, many of these emerging resources were previously overlooked in official management targets or resource inventories pertaining to existing island tourism resources. Noteworthy examples include ports, beaches, and mountains, which, despite constituting a substantial proportion of the newly identified tourist resources, were not accorded prominence in spatial information datasets. This study holds significance in its ability to unearth novel tourism resources recognized by island tourism consumers through a gap analysis approach that juxtaposes the existing status of island tourism resource data with techniques utilizing social media big data. Furthermore, the methodology delineated in this research offers a valuable framework for domestic local governments to gauge local tourism demand and embark on initiatives for tourism development or regional revitalization.

A Study on the Perception of Pit and Fissure Sealant using Unstructured Big Data (비정형 빅데이터를 이용한 치면열구전색(치아홈메우기)에 대한 인식분석)

  • Han-A Cho
    • Journal of Korean Dental Hygiene Science
    • /
    • v.6 no.2
    • /
    • pp.101-114
    • /
    • 2023
  • Background: This study aimed to explore the overall perception of pit and fissure sealants and suggest methods to revitalize their current stagnation. Methods: To determine the social perception of the change in coverage policy for pit and fissure sealants, we categorized them into five time periods. The first period (December 1, 2009 to November 30, 2010), the second period (December 1, 2010 to September 30, 2012), the third period (October 1, 2012 to May 5, 2013), the fourth period (May 6, 2013 to September 30, 2017), and the fifth period (October 1, 2017 to December 31, 2022). We utilized text mining, an unstructured big data analysis method. Keywords were collected and analyzed using Textom, and the frequency analysis of the top 30 keywords, structural features of the semantic network, centrality analysis, QAP correlation analysis, and co-occurrence analysis were conducted. Results: The frequency analysis showed that the top keywords for each time period were 'Cavities', 'Treatment', and 'Children'. In the structural features of the semantic network of pit and fissure sealants by time period, the density index was found to be around 1.00 for all time periods. The QAP correlation analysis showed the highest correlation between the first and second periods and the fourth and fifth periods with a correlation coefficient of 0.834. The co-occurrence analysis showed that 'cavities' and 'prevention were the top two words across all time periods. Conclusion: This study showed that pit and fissure sealants are well accepted by the society as a preventive treatment for caries. However, the awareness of health education related to these sealants was found to be low. Efforts to revitalize stagnant pit and fissure sealants need to be strengthened with effective education.

A Study on Trends of Key Issues in Port Safety at Busan Port (부산항 항만안전 주요 이슈 동향에 관한 연구)

  • Jeong-Min Lee;Do-Yeon Ha;Joo-Hye Kim
    • Journal of Navigation and Port Research
    • /
    • v.48 no.1
    • /
    • pp.34-48
    • /
    • 2024
  • As global supply chain risks proliferate unpredictably, the high interdependence of port and logistics industry intensifies the risk burden. This study conducted fundamental research to explore diverse safety issues in domestic ports. Utilizing news article data about Busan Port, we employed LDA topic modeling and time-series linear regression to understand key safety trends. Over the past 30 years, Busan Port faced nine major safety issues-maritime safety, import cargo inspection, labor strikes, and natural disasters emerged cyclically. Major port safety issues in Busan Port are primarily characterized by an unpredictable nature, falling under socio-environmental and natural phenomena types, indicating a significant impact of global uncertainty. Therefore, systematic policies need to be formulated based on identified port safety issues to enhance port safety in Busan Port. Additionally, there is a need to strengthen the resilience of port safety for unpredictable risk situations. In conclusion, advanced research activities are necessary to promote port safety enhancement in response to dynamically changing social conditions.

Online Privacy Protection: An Analysis of Social Media Reactions to Data Breaches (온라인 정보 보호: 소셜 미디어 내 정보 유출 반응 분석)

  • Seungwoo Seo;Youngjoon Go;Hong Joo Lee
    • Knowledge Management Research
    • /
    • v.25 no.1
    • /
    • pp.1-19
    • /
    • 2024
  • This study analyzed the changes in social media reactions of data subjects to major personal data breach incidents in South Korea from January 2014 to October 2022. We collected a total of 1,317 posts written on Naver Blogs within a week immediately following each incident. Applying the LDA topic modeling technique to these posts, five main topics were identified: personal data breaches, hacking, information technology, etc. Analyzing the temporal changes in topic distribution, we found that immediately after a data breach incident, the proportion of topics directly mentioning the incident was the highest. However, as time passed, the proportion of mentions related indirectly to the personal data breach increased. This suggests that the attention of data subjects shifts from the specific incident to related topics over time, and interest in personal data protection also decreases. The findings of this study imply a future need for research on the changes in privacy awareness of data subjects following personal data breach incidents.

What Concerns Does ChatGPT Raise for Us?: An Analysis Centered on CTM (Correlated Topic Modeling) of YouTube Video News Comments (ChatGPT는 우리에게 어떤 우려를 초래하는가?: 유튜브 영상 뉴스 댓글의 CTM(Correlated Topic Modeling) 분석을 중심으로)

  • Song, Minho;Lee, Soobum
    • Informatization Policy
    • /
    • v.31 no.1
    • /
    • pp.3-31
    • /
    • 2024
  • This study aimed to examine public concerns in South Korea considering the country's unique context, triggered by the advent of generative artificial intelligence such as ChatGPT. To achieve this, comments from 102 YouTube video news related to ethical issues were collected using a Python scraper, and morphological analysis and preprocessing were carried out using Textom on 15,735 comments. These comments were then analyzed using a Correlated Topic Model (CTM). The analysis identified six primary topics within the comments: "Legal and Ethical Considerations"; "Intellectual Property and Technology"; "Technological Advancement and the Future of Humanity"; "Potential of AI in Information Processing"; "Emotional Intelligence and Ethical Regulations in AI"; and "Human Imitation."Structuring these topics based on a correlation coefficient value of over 10% revealed 3 main categories: "Legal and Ethical Considerations"; "Issues Related to Data Generation by ChatGPT (Intellectual Property and Technology, Potential of AI in Information Processing, and Human Imitation)"; and "Fear for the Future of Humanity (Technological Advancement and the Future of Humanity, Emotional Intelligence, and Ethical Regulations in AI)."The study confirmed the coexistence of various concerns along with the growing interest in generative AI like ChatGPT, including worries specific to the historical and social context of South Korea. These findings suggest the need for national-level efforts to ensure data fairness.

A Study on the Characteristics of Real Estate Investment Sentiment by Real Estate Business Cycle Using Text Mining (텍스트 마이닝을 이용한 부동산경기 순환기별 부동산 투자심리 특성 연구)

  • Hyun-Jeong Lee;Yun Kyung Oh
    • Land and Housing Review
    • /
    • v.15 no.3
    • /
    • pp.113-127
    • /
    • 2024
  • This study explores shifts in real estate investment sentiment using media reports from 2012 to 2022, segmenting the market dynamics into three distinct cycles based on housing and land transaction indices. Leveraging 54 BigKinds media sources, we investigates 3,387 headlines and 8,544 body texts using LDA topic modeling. The results show that the first cycle (2012-2015 ) centered on apartment pre-sales, where policy changes influenced sentiment but did not consistently affect investment decisions. The second cycle (2016-2018) was characterized by interest rate hikes and rising property prices in Seoul, resulting in significant fluctuations in transaction volumes. The third cycle (2019-2022) encompassed the effects of COVID-19, market instability, and policy failures, leading to distorted and weakened investment sentiment. Each cycle demonstrated that policies, interest rates, and economic events significantly shaped investor sentiment, as reflected in media reports.

Analysis of the AI Convergence Science Education Research Trends Using Text Mining (텍스트 마이닝을 활용한 AI융합 과학교육 연구 동향 분석)

  • Lee, Ju-Young
    • Journal of Korean Elementary Science Education
    • /
    • v.43 no.4
    • /
    • pp.544-553
    • /
    • 2024
  • The purpose of this study was to analyze the trends of research focusing on artificial intelligence and the science education and derive important problems, topics, and research trends,. The analysis of the AI convergence science education research trends targeted 83 articles on the awareness of artificial intelligence, research trends, design, development, and application of the education programs related to artificial intelligence. The analysis data was collected through the RISS. The collected data was refined using Excel and Textom, and the main keywords were identified and analyzed through the frequency analysis and keyword network analysis. The connection centrality of the keywords was confirmed using the CONCOR analysis. The research results showed that the AI convergence science education research was expanding in both quantitative and qualitative aspects, and that the main keywords were identified as 'AI,' 'AI convergence education,' 'AI convergence science education,' 'AI education,' 'science education,' 'science,' 'machine learning,' 'elementary school,' 'generative AI,' and 'educational program.' Through the connection centrality analysis and CONCOR analysis, it was confirmed that the clusters were formed around the 'naming,' 'content and method,' 'elementary,' and 'data' in the AI integrated science education. Based on the results, the main topics and trends of the research integrating artificial intelligence into the science subjects were derived and the implications and directions for follow-up research were set forth.

A Study on Determining the Priority of Introducing Smart Ports in Korea (국내 스마트 항만 도입 우선순위 도출 연구)

  • Ryu, Won-Hyeong;Nam, Hyung-Sik
    • Journal of Korea Port Economic Association
    • /
    • v.40 no.1
    • /
    • pp.31-59
    • /
    • 2024
  • In June 2016, the term "Fourth Industrial Revolution" was first used at the World Economic Forum in Davos, Switzerland, and it gained worldwide attention. Consequently, the importance of smart ports has increased as the shipping industry has been incorporating various Fourth Industrial Revolution technologies. Currently, major countries around the world are working to achieve digital transformation in the maritime and port industry by establishing comprehensive smart ports. However, the smartification of domestic ports in South Korea is currently limited to a few areas such as Busan, Incheon, and Gwangyang, focusing on port automation. In this context, this study performed keyword analysis to identify key components of smart ports and conducted Analytic Hierarchy Process (AHP) analysis among relevant stakeholders to determine the priorities for the Introduction of smart ports in South Korea. The analysis revealed that universities prioritized automation, intelligenceization, informatization and environmentalization in that order. Research institutes prioritized informatization, intelligenceization, automation and environmentalization. Government agencies prioritized informatization, automation, intelligenceization and environmentalization, while private sector enterprises prioritized automation, intelligenceization, informatization, and environmentalization.

Analysis of Research Trends in The Journal of Engineering Geology (1991-2024): Latent Dirichlet Allocation and Network Analysis ("지질공학"(1991-2024)의 연구동향 분석: 잠재 디리클레 할당 및 네트워크 분석)

  • Taeyong Kim;Hyerim Lee;Minjune Yang
    • The Journal of Engineering Geology
    • /
    • v.34 no.3
    • /
    • pp.429-445
    • /
    • 2024
  • The Journal of Engineering Geology (JEG), a leading academic journal in the field of engineering geology in South Korea, was first published in 1991 and has since been publishing academic papers and research findings. While several literature reviews have been undertaken on specific research areas in recent decades, comprehensive reviews focusing on JEG have been relatively limited. To address this gap, this study applied the latent Dirichlet allocation (LDA) model to analyze the main research topics and trends, and undertook network analysis to identify relationships between topics over different periods. Results for the LDA indicate seven key research topics categorized into three trends: Classic, Emerging and Stable topics. Classic topics include 'Geophysics' and 'Structural geology', which were major subjects in the early years, with their focus shifting to other areas over time. Emerging topics such as 'Hydrogeology' and 'Geohazards' have gained prominence in recent years. Stable topics including 'Geotechnical structures', 'Geomechanics', and 'Environmental geology' have maintained consistent research interest. Network analysis revealed that Structural geology was the central topic prior to 2008, while Geotechnical structures became the focal point of research after 2008, with a shift in research focus. The results of this study contribute to our understanding of research trends and the development of JEG, providing insights for the setting of future research directions.

Improving Performance of Recommendation Systems Using Topic Modeling (사용자 관심 이슈 분석을 통한 추천시스템 성능 향상 방안)

  • Choi, Seongi;Hyun, Yoonjin;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.101-116
    • /
    • 2015
  • Recently, due to the development of smart devices and social media, vast amounts of information with the various forms were accumulated. Particularly, considerable research efforts are being directed towards analyzing unstructured big data to resolve various social problems. Accordingly, focus of data-driven decision-making is being moved from structured data analysis to unstructured one. Also, in the field of recommendation system, which is the typical area of data-driven decision-making, the need of using unstructured data has been steadily increased to improve system performance. Approaches to improve the performance of recommendation systems can be found in two aspects- improving algorithms and acquiring useful data with high quality. Traditionally, most efforts to improve the performance of recommendation system were made by the former approach, while the latter approach has not attracted much attention relatively. In this sense, efforts to utilize unstructured data from variable sources are very timely and necessary. Particularly, as the interests of users are directly connected with their needs, identifying the interests of the user through unstructured big data analysis can be a crew for improving performance of recommendation systems. In this sense, this study proposes the methodology of improving recommendation system by measuring interests of the user. Specially, this study proposes the method to quantify interests of the user by analyzing user's internet usage patterns, and to predict user's repurchase based upon the discovered preferences. There are two important modules in this study. The first module predicts repurchase probability of each category through analyzing users' purchase history. We include the first module to our research scope for comparing the accuracy of traditional purchase-based prediction model to our new model presented in the second module. This procedure extracts purchase history of users. The core part of our methodology is in the second module. This module extracts users' interests by analyzing news articles the users have read. The second module constructs a correspondence matrix between topics and news articles by performing topic modeling on real world news articles. And then, the module analyzes users' news access patterns and then constructs a correspondence matrix between articles and users. After that, by merging the results of the previous processes in the second module, we can obtain a correspondence matrix between users and topics. This matrix describes users' interests in a structured manner. Finally, by using the matrix, the second module builds a model for predicting repurchase probability of each category. In this paper, we also provide experimental results of our performance evaluation. The outline of data used our experiments is as follows. We acquired web transaction data of 5,000 panels from a company that is specialized to analyzing ranks of internet sites. At first we extracted 15,000 URLs of news articles published from July 2012 to June 2013 from the original data and we crawled main contents of the news articles. After that we selected 2,615 users who have read at least one of the extracted news articles. Among the 2,615 users, we discovered that the number of target users who purchase at least one items from our target shopping mall 'G' is 359. In the experiments, we analyzed purchase history and news access records of the 359 internet users. From the performance evaluation, we found that our prediction model using both users' interests and purchase history outperforms a prediction model using only users' purchase history from a view point of misclassification ratio. In detail, our model outperformed the traditional one in appliance, beauty, computer, culture, digital, fashion, and sports categories when artificial neural network based models were used. Similarly, our model outperformed the traditional one in beauty, computer, digital, fashion, food, and furniture categories when decision tree based models were used although the improvement is very small.