• Title/Summary/Keyword: TextMining

Search Result 1,563, Processing Time 0.023 seconds

What Practical Knowledge Do Teachers Share on Blogs? An Analysis Using Text-mining

  • LEE, Dongkuk;KWON, Hyuksoo
    • Educational Technology International
    • /
    • v.23 no.1
    • /
    • pp.97-127
    • /
    • 2022
  • With the recent advancement of technology, there has been an increase in professional development activities, including teachers using blogs to share practical knowledge and reflect on teaching and learning. This study was conducted to identify the contents of practical knowledge shared through the K-12 teachers' blogs. To achieve the research objective, 70,571 blog posts were collected from 329 blogs of K-12 teachers in Korean and analyzed using text mining techniques. The results of the study are as follows. First, practical knowledge sharing activities using teacher blogs have increased. Teachers posted a lot of blogs during the semester. Second, primary school teachers share various curriculum activities, reflections on project classes, class management, opinions related to education, and personal. Third, secondary school teachers share summaries and reviews of curriculum, materials related to college entrance exams, various instructional materials, opinions related to education, and personal experiences on their blogs. This study suggested that blogs are widely used as a venue for sharing practical knowledge of teachers, and that blogs can be a useful way to develop professionalism.

Analysis of Success Factors of Electric Scooter Sharing Service Using User Review Text Mining

  • Kyoung-ae Seo;Jung Seung Lee
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.2
    • /
    • pp.19-30
    • /
    • 2023
  • This study aims to analyze service improvement and success factors of electric scooter sharing service companies by using text mining after collecting reviews of shared electric scooter service applications among various models of sharing economy. In this study, the factors of satisfaction and dissatisfaction of service users were identified using the term frequency inverse document frequency (TF-IDF) technique, and topics for each keyword were extracted using the Latent Dirichlet Allocation (LDA) Topic Modeling technique. According to the analysis results, the main topics were entertainment, safety, service area, application complaints, use complaints, convenience, and mobility. Using the analysis results of this study, employees and researchers of electric scooter sharing service companies will be able to contribute to the improvement and success of related services.

Analysis of Influencing Factors on Asbestos Demolitions Using a Text Mining Method (텍스트 마이닝 기법을 활용한 석면해체·제거작업 영향 요인 분석)

  • Lee, Jae-Woo;Kim, Do-Hyun;Kim, Yu-Jin;Noh, Jae-Yun;Han, Seungwoo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.39-40
    • /
    • 2022
  • The use of asbestos has been completely prohibited in Korea since 2015. Therefore, nationally, the asbestos demolitions in the building are actively underway. In the process of demolishing asbestos, scattering dust occurs, which poses a risk to human body. These dusts causes fatal disease, and especially there is an increasing concern of safety about construction workers and building users. Until this day, however, only few researches have been conducted on asbestos demolishing process. Accordingly, it is necessary to analyze key factors and to develop a safety prediction model for workers. This study is an early stage of building quantified DB, and aims to actualize the safety problems of asbestos demolishing process using text mining method.

  • PDF

Study of Mental Disorder Schizophrenia, based on Big Data

  • Hye-Sun Lee
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.4
    • /
    • pp.279-285
    • /
    • 2023
  • This study provides academic implications by considering trends of domestic research regarding therapy for Mental disorder schizophrenia and psychosocial. For the analysis of this study, text mining with the use of R program and social network analysis method have been used and 65 papers have been collected The result of this study is as follows. First, collected data were visualized through analysis of keywords by using word cloud method. Second, keywords such as intervention, schizophrenia, research, patients, program, effect, society, mind, ability, function were recorded with highest frequency resulted from keyword frequency analysis. Third, LDA (latent Dirichlet allocation) topic modeling result showed that classified into 3 keywords: patient, subjects, intervention of psychosocial, efficacy of interventions. Fourth, the social network analysis results derived connectivity, closeness centrality, betweennes centrality. In conclusion, this study presents significant results as it provided basic rehabilitation data for schizophrenia and psychosocial therapy through new research methods by analyzing with big data method by proposing the results through visualization from seeking research trends of schizophrenia and psychosocial therapy through text mining and social network analysis.

Research Trends on Literature Reviews in Scopus Journals by Authors from Indonesia, Japan, South Korea, Vietnam, Singapore, and Malaysia: A Bibliometric Analysis from 2003 to 2022

  • Prakoso Bhairawa Putera;Amelya Gustina
    • Asian Journal of Innovation and Policy
    • /
    • v.12 no.3
    • /
    • pp.304-322
    • /
    • 2023
  • Text data mining ('big data methods') is one of the most widely used approaches during the COVID-19 pandemic. In particular, text data mining on Scopus databases or Web of Science (WoS). Text data mining is widely used to collect literature for later bibliometric analysis, and in the end, it becomes a literature review article. Therefore, in this article, we reveal the trend of publication of literature reviews in Scopus journals from Indonesia, Japan, South Korea, Vietnam, Singapore, and Malaysia. This article describes two essential parts, namely 1) a comparison of international publication trends and subject area of literature review publications, and 2) a comparison of Top 5 for Authors, Affiliation, Source Title, and Collaboration Country.

Topic Modeling-based QFD Framework for Comparative Analysis between Competitive Products (경쟁 제품 간 비교 분석을 위한 토픽 모델링 기반 품질기능전개 프레임워크)

  • Chenghe Cui;Uk Jung
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.4
    • /
    • pp.701-713
    • /
    • 2023
  • Purpose: The primary purpose of this study is to integrate text mining and Quality Function Deployment (QFD) to automatically extract valuable information from customer reviews, thereby establishing a QFD frame- work to confirm genuine customer needs for New Product Development (NPD). Methods: Our approach combines text mining and QFD through topic modeling and sentiment analysis on a large data set of 56,873 customer reviews from Zappos.com, spanning five running shoe brands. This process objectively identifies customer requirements, establishes priorities, and assesses competitive strengths. Results: Through the analysis of customer reviews, the study successfully extracts customer requirements and translates customer experience insights and emotions into quantifiable indicators of competitiveness. Conclusion: The findings obtained from this research offer essential design guidance for new product develop- ment endeavors. Importantly, the significance of these results extends beyond the running shoe industry, presenting broad and promising applications across diverse sectors.

Study on prediction for a film success using text mining (텍스트 마이닝을 활용한 영화흥행 예측 연구)

  • Lee, Sanghun;Cho, Jangsik;Kang, Changwan;Choi, Seungbae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1259-1269
    • /
    • 2015
  • Recently, big data is positioning as a keyword in the academic circles. And usefulness of big data is carried into government, a local public body and enterprise as well as academic circles. Also they are endeavoring to obtain useful information in big data. This research mainly deals with analyses of box office success or failure of films using text mining. For data, it used a portal site 'D' and film review data, grade point average and the number of screens gained from the Korean Film Commission. The purpose of this paper is to propose a model to predict whether a film is success or not using these data. As a result of analysis, the correct classification rate by the prediction model method proposed in this paper is obtained 95.74%.

An Analysis of Online Black Market: Using Data Mining and Social Network Analysis (온라인 해킹 불법 시장 분석: 데이터 마이닝과 소셜 네트워크 분석 활용)

  • Kim, Minsu;Kim, Hee-Woong
    • The Journal of Information Systems
    • /
    • v.29 no.2
    • /
    • pp.221-242
    • /
    • 2020
  • Purpose This study collects data of the recently activated online black market and analyzes it to present a specific method for preparing for a hacking attack. This study aims to make safe from the cyber attacks, including hacking, from the perspective of individuals and businesses by closely analyzing hacking methods and tools in a situation where they are easily shared. Design/methodology/approach To prepare for the hacking attack through the online black market, this study uses the routine activity theory to identify the opportunity factors of the hacking attack. Based on this, text mining and social network techniques are applied to reveal the most dangerous areas of security. It finds out suitable targets in routine activity theory through text mining techniques and motivated offenders through social network analysis. Lastly, the absence of guardians and the parts required by guardians are extracted using both analysis techniques simultaneously. Findings As a result of text mining, there was a large supply of hacking gift cards, and the demand to attack sites such as Amazon and Netflix was very high. In addition, interest in accounts and combos was in high demand and supply. As a result of social network analysis, users who actively share hacking information and tools can be identified. When these two analyzes were synthesized, it was found that specialized managers are required in the areas of proxy, maker and many managers are required for the buyer network, and skilled managers are required for the seller network.

Construction Bid Data Analysis for Overseas Projects Based on Text Mining - Focusing on Overseas Construction Project's Bidder Inquiry (텍스트 마이닝을 통한 해외건설공사 입찰정보 분석 - 해외건설공사의 입찰자 질의(Bidder Inquiry) 정보를 대상으로 -)

  • Lee, JeeHee;Yi, June-Seong;Son, JeongWook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.5
    • /
    • pp.89-96
    • /
    • 2016
  • Most data generated in construction projects is unstructured text data. Unstructured data analysis is very needed in order for effective analysis on large amounts of text-based documents, such as contracts, specifications, and RFI. This study analysed previously performed project's bid related documents (bidder inquiry) in overseas construction projects; as a results of the analysis frequent words in documents, association rules among the words, and various document topics were derived. This study suggests effective text analysis approach for massive documents with short time using text mining technique, and this approach is expected to extend the unstructured text data analysis in construction industry.

Analyzing insurance image using text network analysis (텍스트 네트워크 분석을 이용한 보험 이미지 분석)

  • Park, Kyungbo;Ko, Haeree;Hong, Jong-Yi
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.3
    • /
    • pp.531-541
    • /
    • 2018
  • This study researched text mining and text network analysis to analyze the images of Nonghyup Insurance for consumers. With the recent development of social media, many texts are being produced and reproduced, and texts of social media provide important information to companies. Text mining and text network analysis are used in many studies to identify image of company and product. As a result of the text analysis, the positive image of the Nonghyup Insurance is safety and stability. Negative images of the Nonghyup Insurance is concern and anxiety. As a result of the textual network analysis, Centered mage of Nonghyup Insurance is safety and concern. This paper allows researchers to extract several lessons learned that are important for the text mining and text network analysis.