• Title/Summary/Keyword: Text sentiment analysis

Search Result 241, Processing Time 0.031 seconds

A Study on the Evaluation of Fashion Design Based on Big Data Text Analysis -Focus on Semantic Network Analysis of Design Elements and Emotional Terms- (빅데이터 텍스트 분석을 기반으로 한 패션디자인 평가 연구 -디자인 속성과 감성 어휘의 의미연결망 분석을 중심으로-)

  • An, Hyosun;Park, Minjung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.42 no.3
    • /
    • pp.428-437
    • /
    • 2018
  • This study derives evaluation terms by analyzing the semantic relationship between design elements and sentiment terms in regards to fashion design. As for research methods, a total of 38,225 texts from Daum and Naver Blogs from November 2015 to October 2016 were collected to analyze the parts, frequency, centrality and semantic networks of the terms. As a result, design elements were derived in the form of a noun while fashion image and user's emotional responses were derived in the form of adjectives. The study selected 15 noun terms and 52 adjective terms as evaluation terms for men's striped shirts. The results of semantic network analysis also showed that the main contents of the users of men's striped shirts were derived as characteristics of expression, daily wear, formation, and function. In addition, design elements such as pattern, color, coordination, style, and fit were classified with evaluation results such as wide, bright, trendy, casual, and slim.

A Study on Brand Image Analysis of Gaming Business Corporation using KoBERT and Twitter Data

  • Kim, Hyunji
    • Journal of Korea Game Society
    • /
    • v.21 no.6
    • /
    • pp.75-86
    • /
    • 2021
  • Brand image refers to how customers, stakeholders and the market see and recognize the brand. A positive brand image leads to continuous purchases, but a negative brand image is directly linked to consumers' buying behavior, such as stopping purchases, so from the corporate perspective, it needs to be quickly and accurately identified. Currently, methods of investigating brand images include surveys and SNS surveys, which have limited number of samples and are time-consuming and costly. Therefore, in this study, we are going to conduct an emotional analysis of text data on social media by utilizing the machine learning based KoBERT model, and then suggest how to use it for game corporate brand image analysis and verify its performance. The result has proved some degree of usability showing the same ranking within five brands when compared with the BRI Korea's brand reputation ranking.

Study on the social issue sentiment classification using text mining (텍스트마이닝을 이용한 사회 이슈 찬반 분류에 관한 연구)

  • Kang, Sun-A;Kim, Yoo Sin;Choi, Sang Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.5
    • /
    • pp.1167-1173
    • /
    • 2015
  • The development of information and communication technology like SNS, blogs, and bulletin boards, was provided a variety of places where you can express your thoughts and comments and allowing Big Data to grow, many people reveal the opinion of the social issues in SNS such as Twitter. In this study, we would like to pre-built sentimental dictionary about social issues and conduct a sentimental analysis with structured dictionary, to gather opinions on social issues that are created on twitter. The data that I used is "bikini", "nakkomsu" including tweet. As the result of analysis, precision is 61% and F1- score is 74%. This study expect to suggest the standard of dictionary construction allowing you to classify positive/negative opinion on specific social issues.

User Experience Factors in Connected Car Infotainment Applications : Focusing on Text Mining Analysis in the Android Auto Reviews (커넥티드카 인포테인먼트 애플리케이션의 사용자 경험 요인 : 안드로이드 오토 리뷰의 텍스트마이닝 분석을 중심으로)

  • Jung Yong Kim;Su-Eun Bae;Junho Choi
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.4
    • /
    • pp.211-225
    • /
    • 2023
  • In the future, infotainment systems are expected to play a pivotal role in mobility ecosystems connecting users and vehicles. This study draws user-experience factors from reviews of Android Auto, a car infotainment application, and analyzes factors that affect satisfaction. The user-experience factors of infotainment have been redefined based on previous studies. To analyze actual user-experience factors, topics are obtained, applied, and interpreted from user discourse through topic modeling. Sentiment analysis and logistic regression are used to determine positive and negative user-experience factors that affect satisfaction. Results of the empirical analysis show that Ease of Use and Understandability are factors that have the greatest impact on satisfaction, and Flexibility, Safety, and Playfulness are factors that have the most critical effect on dissatisfaction. Therefore, this paper suggests ways to improve the satisfaction level of the infotainment system, and establishes a strategy accordingly.

Outlier Detection Techniques for Biased Opinion Discovery (편향된 의견 문서 검출을 위한 이상치 탐지 기법)

  • Yeon, Jongheum;Shim, Junho;Lee, Sanggoo
    • The Journal of Society for e-Business Studies
    • /
    • v.18 no.4
    • /
    • pp.315-326
    • /
    • 2013
  • Users in social media post various types of opinions such as product reviews and movie reviews. It is a common trend that customers get assistance from the opinions in making their decisions. However, as opinion usage grows, distorted feedbacks also have increased. For example, exaggerated positive opinions are posted for promoting target products. So are negative opinions which are far from common evaluations. Finding these biased opinions becomes important to keep social media reliable. Techniques of opinion mining (or sentiment analysis) have been developed to determine sentiment polarity of opinionated documents. These techniques can be utilized for finding the biased opinions. However, the previous techniques have some drawback. They categorize the text into only positive and negative, and they also need a large amount of training data to build the classifier. In this paper, we propose methods for discovering the biased opinions which are skewed from the overall common opinions. The methods are based on angle based outlier detection and personalized PageRank, which can be applied without training data. We analyze the performance of the proposed techniques by presenting experimental results on a movie review dataset.

Visualizing the Results of Opinion Mining from Social Media Contents: Case Study of a Noodle Company (소셜미디어 콘텐츠의 오피니언 마이닝결과 시각화: N라면 사례 분석 연구)

  • Kim, Yoosin;Kwon, Do Young;Jeong, Seung Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.89-105
    • /
    • 2014
  • After emergence of Internet, social media with highly interactive Web 2.0 applications has provided very user friendly means for consumers and companies to communicate with each other. Users have routinely published contents involving their opinions and interests in social media such as blogs, forums, chatting rooms, and discussion boards, and the contents are released real-time in the Internet. For that reason, many researchers and marketers regard social media contents as the source of information for business analytics to develop business insights, and many studies have reported results on mining business intelligence from Social media content. In particular, opinion mining and sentiment analysis, as a technique to extract, classify, understand, and assess the opinions implicit in text contents, are frequently applied into social media content analysis because it emphasizes determining sentiment polarity and extracting authors' opinions. A number of frameworks, methods, techniques and tools have been presented by these researchers. However, we have found some weaknesses from their methods which are often technically complicated and are not sufficiently user-friendly for helping business decisions and planning. In this study, we attempted to formulate a more comprehensive and practical approach to conduct opinion mining with visual deliverables. First, we described the entire cycle of practical opinion mining using Social media content from the initial data gathering stage to the final presentation session. Our proposed approach to opinion mining consists of four phases: collecting, qualifying, analyzing, and visualizing. In the first phase, analysts have to choose target social media. Each target media requires different ways for analysts to gain access. There are open-API, searching tools, DB2DB interface, purchasing contents, and so son. Second phase is pre-processing to generate useful materials for meaningful analysis. If we do not remove garbage data, results of social media analysis will not provide meaningful and useful business insights. To clean social media data, natural language processing techniques should be applied. The next step is the opinion mining phase where the cleansed social media content set is to be analyzed. The qualified data set includes not only user-generated contents but also content identification information such as creation date, author name, user id, content id, hit counts, review or reply, favorite, etc. Depending on the purpose of the analysis, researchers or data analysts can select a suitable mining tool. Topic extraction and buzz analysis are usually related to market trends analysis, while sentiment analysis is utilized to conduct reputation analysis. There are also various applications, such as stock prediction, product recommendation, sales forecasting, and so on. The last phase is visualization and presentation of analysis results. The major focus and purpose of this phase are to explain results of analysis and help users to comprehend its meaning. Therefore, to the extent possible, deliverables from this phase should be made simple, clear and easy to understand, rather than complex and flashy. To illustrate our approach, we conducted a case study on a leading Korean instant noodle company. We targeted the leading company, NS Food, with 66.5% of market share; the firm has kept No. 1 position in the Korean "Ramen" business for several decades. We collected a total of 11,869 pieces of contents including blogs, forum contents and news articles. After collecting social media content data, we generated instant noodle business specific language resources for data manipulation and analysis using natural language processing. In addition, we tried to classify contents in more detail categories such as marketing features, environment, reputation, etc. In those phase, we used free ware software programs such as TM, KoNLP, ggplot2 and plyr packages in R project. As the result, we presented several useful visualization outputs like domain specific lexicons, volume and sentiment graphs, topic word cloud, heat maps, valence tree map, and other visualized images to provide vivid, full-colored examples using open library software packages of the R project. Business actors can quickly detect areas by a swift glance that are weak, strong, positive, negative, quiet or loud. Heat map is able to explain movement of sentiment or volume in categories and time matrix which shows density of color on time periods. Valence tree map, one of the most comprehensive and holistic visualization models, should be very helpful for analysts and decision makers to quickly understand the "big picture" business situation with a hierarchical structure since tree-map can present buzz volume and sentiment with a visualized result in a certain period. This case study offers real-world business insights from market sensing which would demonstrate to practical-minded business users how they can use these types of results for timely decision making in response to on-going changes in the market. We believe our approach can provide practical and reliable guide to opinion mining with visualized results that are immediately useful, not just in food industry but in other industries as well.

Emotion Prediction of Document using Paragraph Analysis (문단 분석을 통한 문서 내의 감정 예측)

  • Kim, Jinsu
    • Journal of Digital Convergence
    • /
    • v.12 no.12
    • /
    • pp.249-255
    • /
    • 2014
  • Recently, creation and sharing of information make progress actively through the SNS(Social Network Service) such as twitter, facebook and so on. It is necessary to extract the knowledge from aggregated information and data mining is one of the knowledge based approach. Especially, emotion analysis is a recent subdiscipline of text classification, which is concerned with massive collective intelligence from an opinion, policy, propensity and sentiment. In this paper, We propose the emotion prediction method, which extracts the significant key words and related key words from SNS paragraph, then predicts the emotion using these extracted emotion features.

Application and Analysis of Emotional Attributes using Crowdsourced Method for Hangul Font Recommendation System (한글 글꼴 추천시스템을 위한 크라우드 방식의 감성 속성 적용 및 분석)

  • Kim, Hyun-Young;Lim, Soon-Bum
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.4
    • /
    • pp.704-712
    • /
    • 2017
  • Various researches on content sensibility with the development of digital contents are under way. Emotional research on fonts is also underway in various fields. There is a requirement to use the content expressions in the same way as the content, and to use the font emotion and the textual sensibility of the text in harmony. But it is impossible to select a proper font emotion in Korea because each of more than 6,000 fonts has a certain emotion. In this paper, we analysed emotional classification attributes and constructed the Hangul font recommendation system. Also we verified the credibility and validity of the attributes themselves in order to apply to Korea Hangul fonts. After then, we tested whether general users can find a proper font in a commercial font set through this emotional recommendation system. As a result, when users want to express their emotions in sentences more visually, they can get a recommendation of a Hangul font having a desired emotion by utilizing font-based emotion attribute values collected through the crowdsourced method.

The Impact of Coupang Reviews on Product Sales : Based on FCB Grid Model (쿠팡 리뷰가 상품 매출에 미치는 영향 분석 : FCB Grid Model을 기준으로)

  • Ryu, Sung Gwan;Lee, Ji Young;Lee, Sang Woo
    • The Journal of Information Systems
    • /
    • v.31 no.2
    • /
    • pp.159-177
    • /
    • 2022
  • Purpose Online reviews are critical for sales of online shopping platforms because they provide useful information to consumers. As the eCommerce market grows rapidly, the role of online reviews is becoming more important. The purpose of this study is to analyze how online reviews written by domestic consumers affect product sales by classifying the types of products. Design/methodology/approach This study analyzed how the effects of review characteristics(reviewer reputation, reviewer exposure, review length, time, rating, image, and emotional score) on the usefulness of online reviews differ depending on the product types. Subsequently, how the impact of review attributes (review usefulness, number of reviews, ratings, and emotional scores) on product sales differs according to each product type was compared. Based on the FCB Grid model, the product type was classified into high involvement-rational, high involvement-emotional, low involvement -rational, and low involvement-emotional product types. Findings According to the analysis result, the characteristics of reviews useful to consumers were different for each product type, and the review attributes affecting product sales were also different for each product type. This study confirmed that it revealed that product characteristics are major consideration in evaluating the review usefulness and the factors affecting product sales.

The Impact of Online Reviews on Hotel Ratings through the Lens of Elaboration Likelihood Model: A Text Mining Approach

  • Qiannan Guo;Jinzhe Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2609-2626
    • /
    • 2023
  • The hotel industry is an example of experiential services. As consumers cannot fully evaluate the online review content and quality of their services before booking, they must rely on several online reviews to reduce their perceived risks. However, individuals face information overload owing to the explosion of online reviews. Therefore, consumer cognitive fluency is an individual's subjective experience of the difficulty in processing information. Information complexity influences the receiver's attitude, behavior, and purchase decisions. Individuals who cannot process complex information rely on the peripheral route, whereas those who can process more information prefer the central route. This study further discusses the influence of the complexity of review information on hotel ratings using online attraction review data retrieved from TripAdvisor.com. This study conducts a two-level empirical analysis to explore the factors that affect review value. First, in the Peripheral Route model, we introduce a negative binomial regression model to examine the impact of intuitive and straightforward information on hotel ratings. In the Central Route model, we use a Tobit regression model with expert reviews as moderator variables to analyze the impact of complex information on hotel ratings. According to the analysis, five-star and budget hotels have different effects on hotel ratings. These findings have immediate implications for hotel managers in terms of better identifying potentially valuable reviews.