• 제목/요약/키워드: Text segmentation

검색결과 140건 처리시간 0.024초

Text Line Segmentation of Handwritten Documents by Area Mapping

  • Boragule, Abhijeet;Lee, GueeSang
    • 스마트미디어저널
    • /
    • 제4권3호
    • /
    • pp.44-49
    • /
    • 2015
  • Text line segmentation is a preprocessing step in OCR, which can significantly influence the accuracy of document analysis applications. This paper proposes a novel methodology for the text line segmentation of handwritten documents. First, the average width of the connected components is used to form a 1-D Gaussian kernel and a smoothing operation is then applied to the input binary image. The adaptive binarization of the smoothed image forms the final text lines. In this work, the segmentation method involves two stages: firstly, the large connected components are labelled as a unique text line using text line area mapping. Secondly, the final refinement of the segmentation is performed using the Euclidean distance between the text line and small connected components. The group of uniquely labelled text candidates achieves promising segmentation results. The proposed approach works well on Korean and English language handwritten documents captured using a camera.

다양한 문자열영상의 개별문자분리 및 인식 알고리즘 (Character Segmentation and Recognition Algorithm for Various Text Region Images)

  • 구근휘;최성후;윤종필;최종현;김상우
    • 전기학회논문지
    • /
    • 제58권4호
    • /
    • pp.806-816
    • /
    • 2009
  • Character recognition system consists of four step; text localization, text segmentation, character segmentation, and recognition. The character segmentation is very important and difficult because of noise, illumination, and so on. For high recognition rates of the system, it is necessary to take good performance of character segmentation algorithm. Many algorithms for character segmentation have been developed up to now, and many people have been recently making researches in segmentation of touching or overlapping character. Most of algorithms cannot apply to the text regions of management number marked on the slab in steel image, because the text regions are irregular such as touching character by strong illumination and by trouble of nozzle in marking machine, and loss of character. It is difficult to gain high success rate in various cases. This paper describes a new algorithm of character segmentation to recognize slab management number marked on the slab in the steel image. It is very important that pre-processing step is to convert gray image to binary image without loss of character and touching character. In this binary image, non-touching characters are simply separated by using vertical projection profile. For separating touching characters, after we use combined profile to find candidate points of boundary, decide real character boundary by using method based on recognition. In recognition step, we remove noise of character images, then recognize respective character images. In this paper, the proposed algorithm is effective for character segmentation and recognition of various text regions on the slab in steel image.

Text Line Segmentation using AHTC and Watershed Algorithm for Handwritten Document Images

  • Oh, KangHan;Kim, SooHyung;Na, InSeop;Kim, GwangBok
    • International Journal of Contents
    • /
    • 제10권3호
    • /
    • pp.35-40
    • /
    • 2014
  • Text line segmentation is a critical task in handwritten document recognition. In this paper, we propose a novel text-line-segmentation method using baseline estimation and watershed. The baseline-detection algorithm estimates the baseline using Adaptive Head-Tail Connection (AHTC) on the document. Then, the watershed method segments the line region using the baseline-detection result. Finally, the text lines are separated by watershed result and a post-processing algorithm defines the lines more correctly. The scheme successfully segments text lines with 97% accuracy from the handwritten document images in the ICDAR database.

연결요소를 이용한 한.영 혼용문서의 구조분석 및 낱자분리 (Bilingual document analysis and character segmentation using connected components)

  • 김민기;권영빈;한상용
    • 한국통신학회논문지
    • /
    • 제22권3호
    • /
    • pp.410-422
    • /
    • 1997
  • In this paper, we descried a bottom-up document structure analysis method in bilingual Korean-English document. We proposed a character segmentation method based on the layout information of connected component of each character. In many researches, a document has been analyzed into text blocks and graphics. We analyzed a document into four parts: text, table, graphic, and separator. A text is recursively subdivided into text blocks, text lines, words, and characters. To extract the character in bilingual text, we proposed a new method of word of word separation of Korean or English. Futhermore, we used a character merging and segmentation method in accordance with the properties of Hangul on the Korean word blocks. Experimental results on the various documents show that the proposed method is very effectively operated on the document structure analysis and the character segmentation.

  • PDF

A Fast Algorithm for Korean Text Extraction and Segmentation from Subway Signboard Images Utilizing Smartphone Sensors

  • Milevskiy, Igor;Ha, Jin-Young
    • Journal of Computing Science and Engineering
    • /
    • 제5권3호
    • /
    • pp.161-166
    • /
    • 2011
  • We present a fast algorithm for Korean text extraction and segmentation from subway signboards using smart phone sensors in order to minimize computational time and memory usage. The algorithm can be used as preprocessing steps for optical character recognition (OCR): binarization, text location, and segmentation. An image of a signboard captured by smart phone camera while holding smart phone by an arbitrary angle is rotated by the detected angle, as if the image was taken by holding a smart phone horizontally. Binarization is only performed once on the subset of connected components instead of the whole image area, resulting in a large reduction in computational time. Text location is guided by user's marker-line placed over the region of interest in binarized image via smart phone touch screen. Then, text segmentation utilizes the data of connected components received in the binarization step, and cuts the string into individual images for designated characters. The resulting data could be used as OCR input, hence solving the most difficult part of OCR on text area included in natural scene images. The experimental results showed that the binarization algorithm of our method is 3.5 and 3.7 times faster than Niblack and Sauvola adaptive-thresholding algorithms, respectively. In addition, our method achieved better quality than other methods.

A Novel Character Segmentation Method for Text Images Captured by Cameras

  • Lue, Hsin-Te;Wen, Ming-Gang;Cheng, Hsu-Yung;Fan, Kuo-Chin;Lin, Chih-Wei;Yu, Chih-Chang
    • ETRI Journal
    • /
    • 제32권5호
    • /
    • pp.729-739
    • /
    • 2010
  • Due to the rapid development of mobile devices equipped with cameras, instant translation of any text seen in any context is possible. Mobile devices can serve as a translation tool by recognizing the texts presented in the captured scenes. Images captured by cameras will embed more external or unwanted effects which need not to be considered in traditional optical character recognition (OCR). In this paper, we segment a text image captured by mobile devices into individual single characters to facilitate OCR kernel processing. Before proceeding with character segmentation, text detection and text line construction need to be performed in advance. A novel character segmentation method which integrates touched character filters is employed on text images captured by cameras. In addition, periphery features are extracted from the segmented images of touched characters and fed as inputs to support vector machines to calculate the confident values. In our experiment, the accuracy rate of the proposed character segmentation system is 94.90%, which demonstrates the effectiveness of the proposed method.

자막 자동 추출을 위한 강건한 자막 분리 알고리즘 (Robust text segmentation algorithm for automatic text extraction)

  • 정제희;정종면
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2007년도 춘계학술대회 학술발표 논문집 제17권 제1호
    • /
    • pp.444-447
    • /
    • 2007
  • 본 논문에서는 비디오에서 자막을 자동 추출하기 위한 강건한 자막 분리 알고리즘을 제안한다. 주어진 비디오에서 자막이 존재할 가능성이 있는 프레임에 대해 자막 후보 영역의 위치를 찾은 다음, 자막 후보 영역으로부터 강건하게 자막을 추출한다. 추출된 자막 후보 영역에 대해 Dampoint labeling을 수행하여 자막과 비슷한 색상을 갖는 배경을 제거하고, 마지막으로 기하학적 검증을 통해 최종적으로 자막 여부를 판별한다. 제안된 방법을 여러 장르의 비디오에 대해 적용 결과 복잡한 배경을 갖는 비디오에서 자막을 강건하게 추출함을 실험을 통해 확인하였다.

  • PDF

Ternary Decomposition and Dictionary Extension for Khmer Word Segmentation

  • Sung, Thaileang;Hwang, Insoo
    • Journal of Information Technology Applications and Management
    • /
    • 제23권2호
    • /
    • pp.11-28
    • /
    • 2016
  • In this paper, we proposed a dictionary extension and a ternary decomposition technique to improve the effectiveness of Khmer word segmentation. Most word segmentation approaches depend on a dictionary. However, the dictionary being used is not fully reliable and cannot cover all the words of the Khmer language. This causes an issue of unknown words or out-of-vocabulary words. Our approach is to extend the original dictionary to be more reliable with new words. In addition, we use ternary decomposition for the segmentation process. In this research, we also introduced the invisible space of the Khmer Unicode (char\u200B) in order to segment our training corpus. With our segmentation algorithm, based on ternary decomposition and invisible space, we can extract new words from our training text and then input the new words into the dictionary. We used an extended wordlist and a segmentation algorithm regardless of the invisible space to test an unannotated text. Our results remarkably outperformed other approaches. We have achieved 88.8%, 91.8% and 90.6% rates of precision, recall and F-measurement.

Blind speech segmentation과 에너지 가중치를 이용한 문장 종속형 화자인식기의 성능 향상 (Performance improvement of text-dependent speaker verification system using blind speech segmentation and energy weight)

  • 김정곤;김형순
    • 대한음성학회지:말소리
    • /
    • 제47호
    • /
    • pp.131-140
    • /
    • 2003
  • We propose a new method of generating client models for HMM based text-dependent speaker verification system with only a small amount of training data. To make a client model, statistical methods such as segmental K-means algorithm are widely used, but they do not guarantee the quality or reliability of a model when only limited data are avaliable. In this paper, we propose a blind speech segmentation based on level building DTW algorithm as an alternative method to make a client model with limited data. In addition, considering the fact that voiced sounds have much more speaker-specific information than unvoiced sounds and energy of the former is higher than that of the latter, we also propose a new score evaluation method using the observation probability raised to the power of weighting factor estimated from the normalized log energy. Our experiment shows that the proposed methods are superior to conventional HMM based speaker verification system.

  • PDF

모바일 시스템에서 텍스트 인식 위한 적응적 문자 분할 (Adaptive Character Segmentation to Improve Text Recognition Accuracy on Mobile Phones)

  • 김정식;양형정;김수형;이귀상;;김선희
    • 스마트미디어저널
    • /
    • 제1권4호
    • /
    • pp.59-71
    • /
    • 2012
  • Since mobile phones are used as common communication devices, their applications are increasingly important to human's life. Using smart-phones camera to collect daily life environment's information is one of targets for many applications such as text recognition, object recognition or context awareness. Studies have been conducted to provide important information through the recognition of texts, which are artificially or naturally included in images and movies acquired from mobile phones. In this study, a character segmentation method that improves character-recognition accuracy in images obtained from mobile phone cameras is proposed. The proposed method first classifies texts in a given image to printed letters and handwritten letters since segmentation approaches for them are different. For printed letters, rough segmentation process is conducted, then the segmented regions are integrated, deleted, and re-segmented. Segmentation for the handwritten letters is performed after skews are corrected and the characters are classified by integrating them. The experimental result shows our method achieves a successful performance for both printed and handwritten letters as 95.9% and 84.7%, respectively.

  • PDF