• 제목/요약/키워드: Text network

검색결과 1,135건 처리시간 0.029초

SNS 빅데이터 및 검색포털 트렌드와 마약류 사건 통계간의 비교 및 의미분석 연구 (A Study on the Comparison and Semantic Analysis between SNS Big Data, Search Portal Trends and Drug Case Statistics)

  • 최은정;이수련;권혜민;김명주;이인수;이승훈
    • 디지털융복합연구
    • /
    • 제19권2호
    • /
    • pp.231-238
    • /
    • 2021
  • SNS는 데이터를 통해 사용자의 생각이나 행동을 파악할 수 있고 검색포털의 트렌드는 사용자들의 관심사와 그 변화를 파악할 수 있는 대표적인 서비스이다. 본 논문에서는 SNS의 트윗과 검색포털 트렌드에 마약류관련 단어 노출정도와 마약류 사건 통계와의 비교분석을 수행하여 관계를 분석하였다. SNS와 검색 포털 트렌드의 추이가 일정한 시차를 두고 검찰청 통계에도 동일하게 나타난 것을 확인할 수 있었다. 또한 마약류관련 단어들이 언급된 트윗들에 대한 의미를 파악하기 위해 군집분석을 수행하였다. 2020년 10월에 수집된 5만건 트윗에서는 실제 마약류의 판매에 관련된 의미를 찾을 수 있었다. 이를 통해 SNS모니터링만으로도 마약류관련 사건에 대한 모니터링이 가능하고 구체적 판매 또는 구매관련한 정보를 찾을 수 있고 수사과정에 활용할 수 있다. 추후에는 텍스트뿐 아니라 이미지로 나타나는 관련 범죄사항을 파악할 수 있고 범죄모니터링 및 예측시스템을 제안할 수 있다.

토핑 모델링을 활용한 동해안 관광의 변화 분석 (The Analysis of Changes in East Coast Tourism using Topic Modeling)

  • 정은희
    • 한국정보전자통신기술학회논문지
    • /
    • 제13권6호
    • /
    • pp.489-495
    • /
    • 2020
  • 4차혁명이 진행되고 있는 초연결사회에선 다양한 IT기기를 통해 데이터량이 증가하고 있고, 이렇게 생산된 데이터를 분석하여 새로운 가치를 창출 할 수 있다. 본 연구에서는 빅카인즈에서 2017년부터 2019년까지 중앙지, 경제지, 지역조합지, 주요방송사 등에서 "(동해안 관광 또는 동해안 여행) 그리고 강원도"라는 키워드로 기사를 총 1,526건을 수집하였다. 수집된 1,526건의 기사를 분석하기 위해 R언어로 구현된 LDA 알고리즘을 이용하여 토픽 모델링을 수행하였다. 2017년부터 2019년까지 각각의 년도별 키워드를 추출하고, 각 년도별로 빈도수가 높은 키워드를 분류하여 비교하였다. Log Likelihood와 Perplexity를 이용하여 최적의 토픽 수를 8로 설정한 후, 깁스 샘플링 방법으로 8가지의 토픽을 추론하였다. 추론된 토픽들은 강릉과 해변, 고성과 금강산, KTX와 동해북부선, 주말바다여행, 속초와 통일전망대, 양양과 서핑, 체험관광, 교통망 인프라이다. 추론된 8개의 토픽의 비중을 이용해 동해안 관광에 대한 기사들의 변화를 분석하였다. 그 결과, 통일전망대와 금강산의 비중은 큰 변화가 없는 것으로 나타났고, KTX와 체험관광의 비중은 증가하였고, 그 외의 토픽들의 비중은 2017년에 비해 2018년에 감소하였다. 2019년에는 KTX와 체험관광의 비중은 감소하였으나, 나머지 토픽들의 비중은 큰 변화가 없는 것으로 나타났다.

코로나 19에 따른 프로야구 무관중 시청품질요인의 중요도, 만족도 분석 (Analysis of the Importance and Satisfaction of Viewing Quality Factors among Non-Audience in Professional Baseball According to Corona 19)

  • 백승헌;김기탁
    • 한국엔터테인먼트산업학회논문지
    • /
    • 제15권2호
    • /
    • pp.123-135
    • /
    • 2021
  • 본 연구의 자료처리는 '코로나 19와 프로야구', '코로나 19와 프로야구 무관중'과 관련된 키워드를 중심으로 텍스톰(textom)프로그램의 텍스트마이닝과 소셜네트워크 분석을 활용해 문제점 도출 및 시청품질의 변인을 설정하는데 활용하였다. 정량적 분석을 위해 시청품질에 관한 설문지를 구성하였으며, 270부의 설문응답자 중 250부의 설문을 최종연구에 사용하였다. 설문지의 타당도와 신뢰도를 확보하기 위한 도구로 탐색적 요인 분석과 신뢰도 분석을 실시하였으며, 타당도와 신뢰도가 확보된 설문을 바탕으로 IPA분석(중요도-만족도)을 실시하여 결과 및 전략을 제시하였다. IPA분석을 실시한 결과 1사분면에 영상과 관련된 요인(영상구성, 영상배색, 영상 선명도, 영상 확대 및 구도, 고음질 영상)이 나타났고 2사분면은 경기상황(응원 팀 경기수준, 응원 선수 경기수준, 스타선수 발굴, 라이벌 팀과의 경기)과 경기정보(경기일정 안내, 선수정보 확인, 팀 성적 및 선수성적, 경기정보), 상호작용(응원팀과의 공감대) 일부의 요인이 나타났으며, 3사분면은 해설자(야구관련 지식, 의사전달 능력, 발음과 목소리, 표준어 사용, 경기관련 정보 소개)와 상호작용(프런트와 실시간 소통, 시청자와의 공감대, 채팅 등의 정보교환)의 요인이 나타났다.

스마트 미러간 화상 통화와 메시징 기능을 가진 CoMirror 시스템 구현 (Implementation of CoMirror System with Video Call and Messaging Function between Smart Mirrors)

  • 황기태;김경미;김유진;박채원;유송연;정인환;이재문
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권6호
    • /
    • pp.121-127
    • /
    • 2022
  • 스마트 미러는 거울에 디스플레이와 임베디드 컴퓨터를 부착하여 거울 기능과 함께 사용자에게 다양한 정보를 제공해주는 IoT 장치이다. 본 논문은 스마트 미러가 사용자에게 정보를 제공하는 독립형 장치(stand alone device)라는 개념에서 벗어나 스마트 미러들이 연결되는 네트워크를 구성하고 사용자들이 다른 스마트 미러 사용자들과 대화하고 정보를 공유하는 CoMirror 시스템을 제안하고 구현하였다. CoMirror 시스템은 1개의 CoMirror 서버를 중심으로 여러 CoMirror 클라이언트들이 연결되는 구조이다. CoMirror 클라이언트는 라즈베리파이와 미러 필름, 터치 패드, 디스플레이 장치, 웹 카메라 등으로 구성되며, 서버에는 얼굴 학습과 인식, 사용자 관리, 클라이언트들 사이의 메시지 교환을 위한 중계 역할, 화상 통화 연결 설정 등의 기능이 구현되었다. 사용자들은 서버를 경유하여 다른 CoMirror 사용자들과 텍스트, 이미지, 오디오 등의 메시지를 주고받을 뿐 아니라, 1:1 화상 통화를 할 수 있도록 구현되었다.

빅데이터 분석을 활용한 메타버스 플랫폼 연구 동향 분석 (A Study on Research Trends in Metaverse Platform Using Big Data Analysis)

  • 홍진욱;한정완
    • 디지털융복합연구
    • /
    • 제20권5호
    • /
    • pp.627-635
    • /
    • 2022
  • 본 최근 코로나19로 인해 비대면 상황이 장기간 지속화됨에 따라 사회 전반에 걸쳐 IOT, AR, VR, 빅데이터와 같은 4차 산업 혁명의 기반 기술이 메타버스 플랫폼에 전반적으로 영향을 미치고 있다. 이러한 사회, 문화 등 외부 환경의 변화는 학문의 발전에 영향을 미칠 수 있으며, 변화에 대비하여 기존 성과물을 체계적으로 정리하는 일은 매우 중요하다. 한국 교육학술정보원(RISS)에서 키워드에 '메타버스 플랫폼'을 포함하는 자료를 수집하여 빅데이터 분석 중 하나인 텍스트 마이닝 기법을 사용하였다. 수집된 데이터 자료를 워드 클라우드 빈도 분석, 키워드 간 연결강도, 구조등위성 분석을 하여 메타버스 플랫폼 연구 동향을 살펴보았다. 연구결과 워드 클라우드 분석에서는 '활용', '디지털', '기술', '교육' 순으로 키워드가 나타났다. 키워드 간 연결강도(N-gram) 분석 결과 '에듀→테크'의 연결강도가 가장 높게 나타났으며, 워드 연쇄 군집 수의 총 3개의 군집이 도출되었다. 세부 연구영역은 '디지털 기술'을 포함 다섯 영역으로 분류되었다. 종합적으로 고려했을 때 메타버스 플랫폼 분야의 학문적 연구 주제 범위는 그리 넓지 않았으며, 장기 지향적 관점에서 보다 적극적인 연구 주제의 발굴 및 논의가 필요해 보인다.

블로그 마이닝을 활용한 행복주택의 인식 분석 (Analysis of Perception on Happy Housing Using Blog Mining Technique)

  • 황지현
    • 한국콘텐츠학회논문지
    • /
    • 제22권2호
    • /
    • pp.211-223
    • /
    • 2022
  • 본 연구는 주거정책 분야에서 여론을 수렴하기 위해 블로그의 활용 가능성을 고찰하고자 한다. 이를 위해 '행복주택'을 키워드로 관련 게시글을 수집하고 주요 키워드를 추출하여 키워드 분석과 단어 군집 분석을 통해 대중들의 인식을 파악하였다. 행복주택에 대한 사회적 논의가 확산된 2013년 5월부터 2021년 8월까지 블로그 게시글 137,002개를 분석 자료로 활용하였으며, 주요 정책과 자료 수집량을 고려하여 수집 기간을 3단계로 나누어 도출된 단어를 분석한 결과는 다음과 같다. 키워드 분석에서 전반적으로 행복주택의 위치, 세대수, 단지 및 주택 규모, 입주 가능 조건 등과 관련된 단어의 중요도가 높았다. 1단계에서는 정부 정책 시행, 2단계에서는 행복주택 신청 절차, 3단계에서는 모집공고, 입주 자격, 임대조건에 중요도가 각각 높은 것으로 나타났다. 군집 분석에서는 모든 단계에서 사업 진행, 신청 절차, 사업지역이 주요 주제로 도출되었다. 특히, 1단계에서는 정책 시행 및 추진방안, 2단계는 입주 자격 및 금융 지원, 3단계에서는 정책 시행 및 입주 자격이 주요한 주제로 도출되었다. 이러한 결과는 블로그를 통해 정책 관련 정보 공유 및 사회적 이슈 반영, 정책 전달 여부 평가, 대중의 정책 참여도 유추가 가능하며, 블로그를 여론 수렴 방법으로 활용할 가능성을 제시한 데에 의의가 있다.

심층 신경망을 활용한 진료 기록 문헌에서의 종단형 개체명 및 관계 추출 비교 연구 - 파이프라인 모델과 결합 모델을 중심으로 - (A Comparative Research on End-to-End Clinical Entity and Relation Extraction using Deep Neural Networks: Pipeline vs. Joint Models)

  • 최성필
    • 한국문헌정보학회지
    • /
    • 제57권1호
    • /
    • pp.93-114
    • /
    • 2023
  • 정보추출은 문헌 내에 존재하는 개체명을 인식함과 동시에 이들 간의 의미적 관계까지도 식별하여 최종적으로 문헌 내에 포함된 의미적 트리플을 자동으로 추출하여 활용할 수 있으므로 문헌에 대한 심층적인 분석과 이해에 많은 도움을 줄 수 있다. 그러나 지금까지 대부분의 정보추출에 대한 연구는 개체명 인식과 관계추출이 개별 연구로 각각 분리되어 진행되었으며, 그 결과 입력 문헌에 대한 정보추출의 최종 출력인 의미적 트리플 추출 성능에 대한 객관적이고 정확한 평가가 제대로 이루어지지 않았다. 이에 본 논문에서는 진료 기록 문헌에 나타나는 개체명과 그들 간의 관계를 트리플 형태로 직접 추출할 수 있는 종단형 정보추출의 2가지 모델인 파이프라인 및 결합형 모델을 구축하는 구체적인 방법론을 제시하고 성능 비교 실험을 진행하였다. 우선 파이프라인 모델은 양방향 GRU-CRFs를 활용한 개체명 인식 모듈과 다중 인코딩 기반 관계추출 모듈로 구현되었고, 결합형 모델을 위해서는 다중 헤드 레이블링 기반의 양방향 GRU-CRFs이 적용되었다. 두 가지 시스템을 바탕으로 진료기록 문헌 내의 개체명과 관계를 모두 태깅하여 구축된 i2b2/VA 2010 데이터셋을 활용한 비교 실험에서 파이프라인 모델의 성능이 5.5%(F-measure) 더 높게 나타났다. 추가적으로, 대규모 신경망 언어모델과 수작업으로 구축된 자질 정보를 활용한 최고 수준의 기존 시스템과의 비교 실험을 통해, 본 논문에서 구현한 종단형 모델의 객관적인 성능 수준을 파악할 수 있었다.

Bi-LSTM 모델을 이용한 음악 생성 시계열 예측 (Prediction of Music Generation on Time Series Using Bi-LSTM Model)

  • 김광진;이칠우
    • 스마트미디어저널
    • /
    • 제11권10호
    • /
    • pp.65-75
    • /
    • 2022
  • 딥러닝은 기존의 분석 모델이 갖는 한계를 극복하고 텍스트, 이미지, 음악 등 다양한 형태의 결과물을 생성할 수 있는 창의적인 도구로 활용되고 있다. 본 고에서는 Niko's MIDI Pack 음원 파일 1,609개를 데이터 셋으로 삼아 전처리 과정을 수행하고, 양방향 장단기 기억 순환 신경망(Bi-LSTM) 모델을 이용하여, 효율적으로 음악을 생성할 수 있는 전처리 방법과 예측 모델을 제시한다. 생성되는 으뜸음을 바탕으로 음악적 조성(調聲)에 적합한 새로운 시계열 데이터를 생성할 수 있도록 은닉층을 다층화하고, 디코더의 출력 게이트에서 인코더의 입력 데이터 중 영향을 주는 요소의 가중치를 적용하는 어텐션(Attention) 메커니즘을 적용한다. LSTM 모델의 인식률 향상을 위한 파라미터로서 손실함수, 최적화 방법 등 설정 변수들을 적용한다. 제안 모델은 MIDI 학습의 효율성 제고 및 예측 향상을 위해 높은음자리표(treble clef)와 낮은음자리표(bass clef)를 구분하여 추출된 음표, 음표의 길이, 쉼표, 쉼표의 길이와 코드(chord) 등을 적용한 다채널 어텐션 적용 양방향 기억 모델(Bi-LSTM with attention)이다. 학습의 결과는 노이즈와 구별되는 음악의 전개에 어울리는 음표와 코드를 생성하며, 화성학적으로 안정된 음악을 생성하는 모델을 지향한다.

빅데이터를 활용한 요양보호사의 서비스질 인식에 관한 연구 (A Study on the Perception of Quality of Care Services by Care Workers using Big Data)

  • 조한아
    • 대한치위생과학회지
    • /
    • 제6권1호
    • /
    • pp.13-25
    • /
    • 2023
  • 연구배경: 본 연구는 비정형 빅데이터를 활용하여 노인장기요양보험의 직접적 서비스 인력인 요양보호사의 서비스질 관리를 확인하고자 수행되었다. 연구방법: 요양보호사의 서비스질과 관련된 소셜 비정형 데이터를 텍스톰을 사용하여 수집·분석하였다. 데이터를 크롤링하여 수집된 상위 50개 키워드들 간의 빈도분석, TF-IDF, 중심성 분석, 의미연결망분석과 CONCOR 분석을 실시하였다. 연구결과: 빈도분석 결과 상위권에 속한 키워드는 '요양서비스' '요양보호사', '서비스질', '요양보호', '장기요양기관', '향상', '어르신', '처우', '개선', '필요' 였으며, 연결중심성과 위세중심성 분석결과도 거의 동일한 순위로 확인되었다. CONCOR 분석결과 4개의 그룹으로, 요양서비스질 개선, 요양서비스 운영, 요양서비스 제도, 요양보호사의 심리적인 부분에 대한 인식이 높은 것으로 나타났다. 결론: 본 연구는 요양보호사의 서비스질과 관련한 인식을 의미있는 그룹으로 제시하였으며 이는 요양보호사 서비스질 향상을 위한 다각적인 방향성 수립에 기여할 것으로 판단된다.

탄소중립 기술의 미래신호 탐색연구: 국내 뉴스 기사 텍스트데이터를 중심으로 (Detecting Weak Signals for Carbon Neutrality Technology using Text Mining of Web News)

  • 정지송;노승국
    • 산업융합연구
    • /
    • 제21권5호
    • /
    • pp.1-13
    • /
    • 2023
  • 우리나라는 기후변화 위기에 대응하기 위해 2050 탄소중립을 선언하였으며, 이를 위해 다양한 감축 계획 및 입법화 과정을 진행 중이다. 탄소중립의 실현은 산업기술 전반에서의 근본적 변화를 필요로 하기 때문에 이를 위한 구체적 대응체계 마련이 매우 중요하다. 본고는 탄소중립 관련 산업기술 확보 경쟁에서 선제적으로 대비하기 위하여 글로벌 탄소중립 기술분야의 현황과 발전 트렌드를 파악하고자 한다. 이를 위해, 탄소중립 관련 온라인 뉴스기사 데이터를 웹 크롤링하여 수집하였고, 미래신호분석방법론과 인공신경망 딥러닝 기술인 Word2Vec알고리즘을 적용하여 탄소중립 기술 트렌드를 분석 및 예측하였다. 분석결과, 탄소 과배출 업종인 철강업 및 석유화학 분야의 기술고도화가 요구되고 있었으며, 전기차 분야에의 투자 타당성 확보와 기술 고급화가 추세인 것으로 드러났다. 이에 대한 정부의 적극적인 지원과 글로벌한 기술협력/인프라 조성이 밑받침되어야 할 것으로 보인다. 그 외에도 탄소중립 관련 인력양성이 시급한 것으로 나타났으며, 기업에서 필요한 탄소중립 인력을 양성할 수 있도록 간접지원정책 마련의 필요성을 확인할 수 있었다.