• Title/Summary/Keyword: Text data

Search Result 2,956, Processing Time 0.025 seconds

Bibliometric Analysis on Studies of Korean Intangible Cultural Property Dance : Focusing on Events in the Seoul Area (한국무형문화재 춤 연구의 계량서지학적 분석 : 서울지역 종목을 중심으로)

  • Yoo, Ji-Young;Kim, Jee-Young;Baek, Hyun-Soon
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.4
    • /
    • pp.139-147
    • /
    • 2019
  • This study conducted bibliometric analysis on studies of Korean intangible cultural heritage dance in the Seoul area and it aimed to figure out the tendencies of that research. For this, a list of Korean intangible cultural heritage dance studies of 24 events was collected and analysis was conducted through the big data analysis solution of TEXTOM. Text mining was used as the method for analysis. Research results showed that first, most of the studies were conducted on the Bongsan Talchum and studies on teaching and learning methods were especially actively conducted. On the other hand, there were not many studies on Gut and the need for research vitalization in that area was confirmed. Second, in studies on Cheoyongmu events, the term'contemporary Cheoyongmu' was used frequently. This can be considered the use of meaningful terms with regard to intangible cultural heritage dance that has changed throughout history. At this, the vitalization of research that can reveal the typicality of dance is demanded from research of other events as well. Third, there was a notable amount of research that compared and analyzed dance styles with regard to the Munmyoilmu. This was seen as the result of discussions in the Korean dancing world regarding archetypal dance styles expanding into academic discussions. Therefore, it was revealed that academic discussions can connect to academic outcomes apart from whether the matter is right or wrong.

Hate Speech Detection Using Modified Principal Component Analysis and Enhanced Convolution Neural Network on Twitter Dataset

  • Majed, Alowaidi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.112-119
    • /
    • 2023
  • Traditionally used for networking computers and communications, the Internet has been evolving from the beginning. Internet is the backbone for many things on the web including social media. The concept of social networking which started in the early 1990s has also been growing with the internet. Social Networking Sites (SNSs) sprung and stayed back to an important element of internet usage mainly due to the services or provisions they allow on the web. Twitter and Facebook have become the primary means by which most individuals keep in touch with others and carry on substantive conversations. These sites allow the posting of photos, videos and support audio and video storage on the sites which can be shared amongst users. Although an attractive option, these provisions have also culminated in issues for these sites like posting offensive material. Though not always, users of SNSs have their share in promoting hate by their words or speeches which is difficult to be curtailed after being uploaded in the media. Hence, this article outlines a process for extracting user reviews from the Twitter corpus in order to identify instances of hate speech. Through the use of MPCA (Modified Principal Component Analysis) and ECNN, we are able to identify instances of hate speech in the text (Enhanced Convolutional Neural Network). With the use of NLP, a fully autonomous system for assessing syntax and meaning can be established (NLP). There is a strong emphasis on pre-processing, feature extraction, and classification. Cleansing the text by removing extra spaces, punctuation, and stop words is what normalization is all about. In the process of extracting features, these features that have already been processed are used. During the feature extraction process, the MPCA algorithm is used. It takes a set of related features and pulls out the ones that tell us the most about the dataset we give itThe proposed categorization method is then put forth as a means of detecting instances of hate speech or abusive language. It is argued that ECNN is superior to other methods for identifying hateful content online. It can take in massive amounts of data and quickly return accurate results, especially for larger datasets. As a result, the proposed MPCA+ECNN algorithm improves not only the F-measure values, but also the accuracy, precision, and recall.

A Study on the Tangibility and Intangibility Value Contents Influence Factor of Jongmyo Shrine Using Text Mining Analysis (텍스트 마이닝 분석을 활용한 종묘의 유·무형 콘텐츠 영향요인 연구)

  • Park, Eun Soo;Kim, Ji Eun
    • Korea Science and Art Forum
    • /
    • v.22
    • /
    • pp.169-183
    • /
    • 2015
  • As time is rapidly changing, the culture to represent an era is getting more subdivided and complex. Due to cultural diversity, the influence, cause, characteristics which could be understood in individual field centered by space in the past cannot be understood now only by the viewpoint of one field, and it has become difficult to predict and correspond to the change of the future. With the development of information and knowledge delivery system, various cultural contents to form a space are being created and lapsed, but there are a lot of parts which cannot be explained or understood by only one point of view. To inspect these situation, this study is aimed to draw the Tangibility and Intangibility Value causes that became the influence with Jongmyo Shrine, designated from UNESCO at February 1995, a traditional space with historical superiority, analyze the key factors that became the main factor to form the space, and consider the importance of the related factors. The unconstructured data technique which is applied as the method of analysis in this study can be said to be a new value judgement and viewpoint in interpreting the space. Therefore, this study is a new trial to provide a frame for multilaterally interpreting the various traditional space and culture of Korea from the past to the present.

An Exploratory Study of Generative AI Service Quality using LDA Topic Modeling and Comparison with Existing Dimensions (LDA토픽 모델링을 활용한 생성형 AI 챗봇의 탐색적 연구 : 기존 AI 챗봇 서비스 품질 요인과의 비교)

  • YaeEun Ahn;Jungsuk Oh
    • Journal of Service Research and Studies
    • /
    • v.13 no.4
    • /
    • pp.191-205
    • /
    • 2023
  • Artificial Intelligence (AI), especially in the domain of text-generative services, has witnessed a significant surge, with forecasts indicating the AI-as-a-Service (AIaaS) market reaching a valuation of $55.0 Billion by 2028. This research set out to explore the quality dimensions characterizing synthetic text media software, with a focus on four key players in the industry: ChatGPT, Writesonic, Jasper, and Anyword. Drawing from a comprehensive dataset of over 4,000 reviews sourced from a software evaluation platform, the study employed the Latent Dirichlet Allocation (LDA) topic modeling technique using the Gensim library. This process resulted the data into 11 distinct topics. Subsequent analysis involved comparing these topics against established AI service quality dimensions, specifically AICSQ and AISAQUAL. Notably, the reviews predominantly emphasized dimensions like availability and efficiency, while others, such as anthropomorphism, which have been underscored in prior literature, were absent. This observation is attributed to the inherent nature of the reviews of AI services examined, which lean more towards semantic understanding rather than direct user interaction. The study acknowledges inherent limitations, mainly potential biases stemming from the singular review source and the specific nature of the reviewer demographic. Possible future research includes gauging the real-world implications of these quality dimensions on user satisfaction and to discuss deeper into how individual dimensions might impact overall ratings.

Comparing Corporate and Public ESG Perceptions Using Text Mining and ChatGPT Analysis: Based on Sustainability Reports and Social Media (텍스트마이닝과 ChatGPT 분석을 활용한 기업과 대중의 ESG 인식 비교: 지속가능경영보고서와 소셜미디어를 기반으로)

  • Jae-Hoon Choi;Sung-Byung Yang;Sang-Hyeak Yoon
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.347-373
    • /
    • 2023
  • As the significance of ESG (Environmental, Social, and Governance) management amplifies in driving sustainable growth, this study delves into and compares ESG trends and interrelationships from both corporate and societal viewpoints. Employing a combination of Latent Dirichlet Allocation Topic Modeling (LDA) and Semantic Network Analysis, we analyzed sustainability reports alongside corresponding social media datasets. Additionally, an in-depth examination of social media content was conducted using Joint Sentiment Topic Modeling (JST), further enriched by Semantic Network Analysis (SNA). Complementing text mining analysis with the assistance of ChatGPT, this study identified 25 different ESG topics. It highlighted differences between companies aiming to avoid risks and build trust, and the general public's diverse concerns like investment options and working conditions. Key terms like 'greenwashing,' 'serious accidents,' and 'boycotts' show that many people doubt how companies handle ESG issues. The findings from this study set the foundation for a plan that serves key ESG groups, including businesses, government agencies, customers, and investors. This study also provide to guide the creation of more trustworthy and effective ESG strategies, helping to direct the discussion on ESG effectiveness.

An Analysis of the Support Policy for Small Businesses in the Post-Covid-19 Era Using the LDA Topic Model (LDA 토픽 모델을 활용한 포스트 Covid-19 시대의 소상공인 지원정책 분석)

  • Kyung-Do Suh;Jung-il Choi;Pan-Am Choi;Jaerim Jung
    • Journal of Industrial Convergence
    • /
    • v.22 no.6
    • /
    • pp.51-59
    • /
    • 2024
  • The purpose of the paper is to suggest government policies that are practically helpful to small business owners in pandemic situations such as COVID-19. To this end, keyword frequency analysis and word cloud analysis of text mining analysis were performed by crawling news articles centered on the keywords "COVID-19 Support for Small Businesses", "The Impact of Small Businesses by Response System to COVID-19 Infectious Diseases", and "COVID-19 Small Business Economic Policy", and major issues were identified through LDA topic modeling analysis. As a result of conducting LDA topic modeling, the support policy for small business owners formed a topic label with government cash and financial support, and the impact of small business owners according to the COVID-19 infectious disease response system formed a topic label with a government-led quarantine system and an individual-led quarantine system, and the COVID-19 economic policy formed a topic label with a policy for small business owners to acquire economic crisis and self-sustainability. Focusing on the organized topic label, it was intended to provide basic data for small business owners to understand the damage reduction policy for small business owners and the policy for enhancing market competitiveness in the future pandemic situation.

Exploring the Nature of Cybercrime and Countermeasures: Focusing on Copyright Infringement, Gambling, and Pornography Crimes (사이버 범죄의 특성과 대응방안 연구: 저작권 침해, 도박, 음란물 범죄를 중심으로)

  • Ilwoong Kang;Jaehui Kim;So-Hyun Lee;Hee-Woong Kim
    • Knowledge Management Research
    • /
    • v.25 no.2
    • /
    • pp.69-94
    • /
    • 2024
  • With the development of cyberspace and its increasing interaction with our daily lives, cybercrime has been steadily increasing in recent years and has become more prominent as a serious social problem. Notably, the "four major malicious cybercrimes" - cyber fraud, cyber financial crime, cyber sexual violence, and cyber gambling - have drawn significant attention. In order to minimize the damage of cybercrime, it's crucial to delve into the specifics of each crime and develop targeted prevention and intervention strategies. Yet, most existing research relies on indirect data sources like statistics, victim testimonials, and public opinion. This study seeks to uncover the characteristics and factors of cybercrime by directly interviewing suspects involved in 'copyright infringement', 'gambling' related to illicit online content, and 'pornography crime'. Through coding analysis and text mining, the study aims to offer a more in-depth understanding of cybercrime dynamics. Furthermore, by suggesting preventative and remedial measures, the research aims to equip policymakers with vital information to reduce the repercussions of this escalating digital threat.

A Study on Sentiment Score of Healthcare Service Quality on the Hospital Rating (의료 서비스 리뷰의 감성 수준이 병원 평가에 미치는 영향 분석)

  • Jee-Eun Choi;Sodam Kim;Hee-Woong Kim
    • Information Systems Review
    • /
    • v.20 no.2
    • /
    • pp.111-137
    • /
    • 2018
  • Considering the increase in health insurance benefits and the elderly population of the baby boomer generation, the amount consumed by health care in 2020 is expected to account for 20% of US GDP. As the healthcare industry develops, competition among the medical services of hospitals intensifies, and the need of hospitals to manage the quality of medical services increases. In addition, interest in online reviews of hospitals has increased as online reviews have become a tool to predict hospital quality. Consumers tend to refer to online reviews even when choosing healthcare service providers and after evaluating service quality online. This study aims to analyze the effect of sentiment score of healthcare service quality on hospital rating with Yelp hospital reviews. This study classifies large amount of text data collected online primarily into five service quality measurement indexes of SERVQUAL theory. The sentiment scores of reviews are then derived by SERVQUAL dimensions, and an econometric analysis is conducted to determine the sentiment score effects of the five service quality dimensions on hospital reviews. Results shed light on the means of managing online hospital reputation to benefit managers in the healthcare and medical industry.

A Topic Modeling Approach to the Analysis of Seniors' Happiness and Unhappiness in Korea (토픽 모델링 기반 한국 노인의 행복과 불행 이슈 분석)

  • Dong ji Moon;Dine Yon;Hee-Woong Kim
    • Information Systems Review
    • /
    • v.20 no.2
    • /
    • pp.139-161
    • /
    • 2018
  • As Korea became one of the oldest countries in the world, successful aging emerged as an important issue to individuals as well as to society. This study aims to determine not only the Korean seniors' happiness and unhappiness factors but also the means to enhance their happiness and deal with unhappiness. We collected news articles related to the happiness and unhappiness of seniors with nine keywords based on Alderfer's ERG Theory. We then applied a topic modeling technique, Latent Dirichlet Allocation, to examine the main issues underlying the seniors' happiness and unhappiness. According to the analysis, we investigated the conditions of happiness and unhappiness by inspecting the topics based on each keyword. We also conducted a detailed analysis based on the main factors from topic modeling. We proposed specific ways to increase and overcome the happiness and unhappiness of seniors, respectively, in terms of government, corporate, family, and other social welfare organizations. This study indicates the major factors that affect the happiness and unhappiness of seniors. Specific methods to boost happiness and relief unhappiness are suggested from the additional analysis.

The Usability Evaluation of Kiosks for Individuals with Low Vision (저시력 시각장애인의 키오스크 사용성 평가 연구)

  • Kyounghoon Kim;Yumi Kim;Sumin Baeck;Jeong Hyeun Ko
    • Journal of the Korean Society for information Management
    • /
    • v.41 no.3
    • /
    • pp.331-358
    • /
    • 2024
  • In the rapid digital transformation era, kiosks have become a common element in daily life. However, their widespread deployment has introduced new challenges for socially marginalized groups, including individuals with disabilities and the elderly. This study aims to evaluate the usability of kiosks for individuals with low vision and propose improvement strategies. The study was conducted with eight low-vision university students from A University in Gyeongsangbuk-do and four non-disabled university students from Daegu. Usability was assessed through experiments involving a self-service certificate issuance kiosk and a fast-food restaurant kiosk, using Jakob Nielsen's five usability evaluation criteria: learnability, efficiency, memorability, error prevention, and satisfaction. The results revealed that individuals with low vision faced significant difficulties with small text size, low contrast, no physical buttons, and lack of screen zoom functionality. To address these issues, the study recommends enhancements such as increasing text size and contrast, incorporating physical buttons, adding zoom functionality, ensuring consistent UI design, and providing auditory feedback. This study provides foundational data for enhancing information accessibility for individuals with low vision. It offers critical insights into kiosk design and policy recommendations, thereby contributing to the mitigation of the digital divide.