• 제목/요약/키워드: Text data

검색결과 2,953건 처리시간 0.029초

Qualitative Study on Group Decision Making with Synchronous Text Communication Medium (동시적 텍스트 기반 매체를 이용한 집단의사결정에 관한 질적 연구)

  • Park Sanghyuk;Cho Namjae
    • Journal of Information Technology Applications and Management
    • /
    • 제11권4호
    • /
    • pp.1-23
    • /
    • 2004
  • This study identifies communication patterns of groups using synchronous text communication medium for their group decision-making, and examines how these patterns are associated with creative solutions to problems. Our research suggests that certain communication behavior of groups, when appropriately organized, can be of help in enhancing creative production of outcomes. A qualitative study was conducted on communication patterns based on an analysis of text-based electronic conversation protocols. Specifically this research tried to overcome existing studies on electronic groups by focusing on interactive process of communication among participants. The major study conclusion; are: (1) The production of creative outcome may depend on the process or sequence of discussion among group members with synchronous text communication medium. That is, proper interactive responses and appropriate control of the discussion process are essential to obtain a high level of performance. (2) It is importantto make discuss rules based on meta-cognitive and interactive protocols in the early stage. Explicit rules relating to internal group processes as well as communication medium use are even more important to groups with electronic communication medium than face-to-face groups.

  • PDF

Illumination-Robust Foreground Extraction for Text Area Detection in Outdoor Environment

  • Lee, Jun;Park, Jeong-Sik;Hong, Chung-Pyo;Seo, Yong-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권1호
    • /
    • pp.345-359
    • /
    • 2017
  • Optical Character Recognition (OCR) that has been a main research topic of computer vision and artificial intelligence now extend its applications to detection of text area from video or image contents taken by camera devices and retrieval of text information from the area. This paper aims to implement a binarization algorithm that removes user intervention and provides robust performance to outdoor lights by using TopHat algorithm and channel transformation technique. In this study, we particularly concentrate on text information of outdoor signboards and validate our proposed technique using those data.

Text Detection in Scene Images Based on Interest Points

  • Nguyen, Minh Hieu;Lee, Gueesang
    • Journal of Information Processing Systems
    • /
    • 제11권4호
    • /
    • pp.528-537
    • /
    • 2015
  • Text in images is one of the most important cues for understanding a scene. In this paper, we propose a novel approach based on interest points to localize text in natural scene images. The main ideas of this approach are as follows: first we used interest point detection techniques, which extract the corner points of characters and center points of edge connected components, to select candidate regions. Second, these candidate regions were verified by using tensor voting, which is capable of extracting perceptual structures from noisy data. Finally, area, orientation, and aspect ratio were used to filter out non-text regions. The proposed method was tested on the ICDAR 2003 dataset and images of wine labels. The experiment results show the validity of this approach.

Research Trend Analysis by using Text-Mining Techniques on the Convergence Studies of AI and Healthcare Technologies (텍스트 마이닝 기법을 활용한 인공지능과 헬스케어 융·복합 분야 연구동향 분석)

  • Yoon, Jee-Eun;Suh, Chang-Jin
    • Journal of Information Technology Services
    • /
    • 제18권2호
    • /
    • pp.123-141
    • /
    • 2019
  • The goal of this study is to review the major research trend on the convergence studies of AI and healthcare technologies. For the study, 15,260 English articles on AI and healthcare related topics were collected from Scopus for 55 years from 1963, and text mining techniques were conducted. As a result, seven key research topics were defined : "AI for Clinical Decision Support System (CDSS)", "AI for Medical Image", "Internet of Healthcare Things (IoHT)", "Big Data Analytics in Healthcare", "Medical Robotics", "Blockchain in Healthcare", and "Evidence Based Medicine (EBM)". The result of this study can be utilized to set up and develop the appropriate healthcare R&D strategies for the researchers and government. In this study, text mining techniques such as Text Analysis, Frequency Analysis, Topic Modeling on LDA (Latent Dirichlet Allocation), Word Cloud, and Ego Network Analysis were conducted.

Normalized Term Frequency Weighting Method in Automatic Text Categorization (자동 문서분류에서의 정규화 용어빈도 가중치방법)

  • 김수진;박혁로
    • Proceedings of the IEEK Conference
    • /
    • 대한전자공학회 2003년도 컴퓨터소사이어티 추계학술대회논문집
    • /
    • pp.255-258
    • /
    • 2003
  • This paper defines Normalized Term Frequency Weighting method for automatic text categorization by using Box-Cox, and then it applies automatic text categorization. Box-Cox transformation is statistical transformation method which makes normalized data. This paper applies that and suggests new term frequency weighting method. Because Normalized Term Frequency is different from every term compared by existing term frequency weighting method, it is general method more than fixed weighting method such as log or root. Normalized term frequency weighting method's reasonability has been proved though experiments, used 8000 newspapers divided in 4 groups, which resulted high categorization correctness in all cases.

  • PDF

Is Text Mining on Trade Claim Studies Applicable? Focused on Chinese Cases of Arbitration and Litigation Applying the CISG

  • Yu, Cheon;Choi, DongOh;Hwang, Yun-Seop
    • Journal of Korea Trade
    • /
    • 제24권8호
    • /
    • pp.171-188
    • /
    • 2020
  • Purpose - This is an exploratory study that aims to apply text mining techniques, which computationally extracts words from the large-scale text data, to legal documents to quantify trade claim contents and enables statistical analysis. Design/methodology - This is designed to verify the validity of the application of text mining techniques as a quantitative methodology for trade claim studies, that have relied mainly on a qualitative approach. The subjects are 81 cases of arbitration and court judgments from China published on the website of the UNCITRAL where the CISG was applied. Validation is performed by comparing the manually analyzed result with the automatically analyzed result. The manual analysis result is the cluster analysis wherein the researcher reads and codes the case. The automatic analysis result is an analysis applying text mining techniques to the result of the cluster analysis. Topic modeling and semantic network analysis are applied for the statistical approach. Findings - Results show that the results of cluster analysis and text mining results are consistent with each other and the internal validity is confirmed. And the degree centrality of words that play a key role in the topic is high as the between centrality of words that are useful for grasping the topic and the eigenvector centrality of the important words in the topic is high. This indicates that text mining techniques can be applied to research on content analysis of trade claims for statistical analysis. Originality/value - Firstly, the validity of the text mining technique in the study of trade claim cases is confirmed. Prior studies on trade claims have relied on traditional approach. Secondly, this study has an originality in that it is an attempt to quantitatively study the trade claim cases, whereas prior trade claim cases were mainly studied via qualitative methods. Lastly, this study shows that the use of the text mining can lower the barrier for acquiring information from a large amount of digitalized text.

An Embedded Text Index System for Mass Flash Memory (대용량 플래시 메모리를 위한 임베디드 텍스트 인덱스 시스템)

  • Yun, Sang-Hun;Cho, Haeng-Rae
    • Journal of the Korea Society of Computer and Information
    • /
    • 제14권6호
    • /
    • pp.1-10
    • /
    • 2009
  • Flash memory has the advantages of nonvolatile, low power consumption, light weight, and high endurance. This enables the flash memory to be utilized as a storage of mobile computing device such as PMP(Portable Multimedia Player). Potable device with a mass flash memory can store various multimedia data such as video, audio, or image. Typical index systems for mobile computer are inefficient to search a form of text like lyric or title. In this paper, we propose a new text index system, named EMTEX(Embedded Text Index). EMTEX has the following salient features. First, it uses a compression algorithm for embedded system. Second, if a new insert or delete operation is executed on the base table. EMTEX updates the text index immediately. Third, EMTEX considers the characteristics of flash memory to design insert, delete, and rebuild operations on the text index. Finally, EMTEX is executed as an upper layer of DBMS. Therefore, it is independent of the underlying DBMS. We evaluate the performance of EMTEX. The Experiment results show that EMTEX can outperform th conventional index systems such as Oracle Text and FT3.

Pill Identification Algorithm Based on Deep Learning Using Imprinted Text Feature (음각 정보를 이용한 딥러닝 기반의 알약 식별 알고리즘 연구)

  • Seon Min, Lee;Young Jae, Kim;Kwang Gi, Kim
    • Journal of Biomedical Engineering Research
    • /
    • 제43권6호
    • /
    • pp.441-447
    • /
    • 2022
  • In this paper, we propose a pill identification model using engraved text feature and image feature such as shape and color, and compare it with an identification model that does not use engraved text feature to verify the possibility of improving identification performance by improving recognition rate of the engraved text. The data consisted of 100 classes and used 10 images per class. The engraved text feature was acquired through Keras OCR based on deep learning and 1D CNN, and the image feature was acquired through 2D CNN. According to the identification results, the accuracy of the text recognition model was 90%. The accuracy of the comparative model and the proposed model was 91.9% and 97.6%. The accuracy, precision, recall, and F1-score of the proposed model were better than those of the comparative model in terms of statistical significance. As a result, we confirmed that the expansion of the range of feature improved the performance of the identification model.

An Exploratory Approach to Discovering Salary-Related Wording in Job Postings in Korea

  • Ha, Taehyun;Coh, Byoung-Youl;Lee, Mingook;Yun, Bitnari;Chun, Hong-Woo
    • Journal of Information Science Theory and Practice
    • /
    • 제10권spc호
    • /
    • pp.86-95
    • /
    • 2022
  • Online recruitment websites discuss job demands in various fields, and job postings contain detailed job specifications. Analyzing this text can elucidate the features that determine job salaries. Text embedding models can learn the contextual information in a text, and explainable artificial intelligence frameworks can be used to examine in detail how text features contribute to the models' outputs. We collected 733,625 job postings using the WORKNET API and classified them into low, mid, and high-range salary groups. A text embedding model that predicts job salaries based on the text in job postings was trained with the collected data. Then, we applied the SHapley Additive exPlanations (SHAP) framework to the trained model and discovered the significant words that determine each salary class. Several limitations and remaining words are also discussed.

Improvement of topic modeling and case analysis through convergence of Bertopic and TextRank (버토픽과 텍스트랭크의 융합을 통한 토픽모델링의 개선 및 사례 분석)

  • Kim, Keun Hyung;Kang Jae Jung
    • The Journal of Information Systems
    • /
    • 제33권3호
    • /
    • pp.105-121
    • /
    • 2024
  • Purpose The purpose of this paper is to develop a method to improve topic representation by incorporating the TextRank technique in Bertopic-based topic modeling and additional indicators for determining the optimal number of topics. Design/methodology/approach In this paper, we propose a method to extract important documents from documents assigned to each topic of a topic model using the TextRank technique, and to calculate secondary diversity and generate topic representations based on the results. First, we integrate the TextRank algorithm into the Bertopic-based topic modeling process to set local secondary labels for each topic. The secondary labels of each topic are derived through extractive summarization based on the TextRank algorithm. Second, we improve the accuracy of selecting the optimal number of topics by calculating the secondary diversity index based on the extractive summary results of each topic. Third, we improve the efficiency by utilizing ChatGPT when deriving the labels of each topic. Findings As a result of performing case analysis and analysis evaluation using the proposed method, it was confirmed that topic representation based on TextRank results generated more accurate topic labels and that the secondary diversity index was a more effective index for determining the optimal number of topics.