• 제목/요약/키워드: Text Summarization

검색결과 128건 처리시간 0.028초

Automatic Single Document Text Summarization Using Key Concepts in Documents

  • Sarkar, Kamal
    • Journal of Information Processing Systems
    • /
    • 제9권4호
    • /
    • pp.602-620
    • /
    • 2013
  • Many previous research studies on extractive text summarization consider a subset of words in a document as keywords and use a sentence ranking function that ranks sentences based on their similarities with the list of extracted keywords. But the use of key concepts in automatic text summarization task has received less attention in literature on summarization. The proposed work uses key concepts identified from a document for creating a summary of the document. We view single-word or multi-word keyphrases of a document as the important concepts that a document elaborates on. Our work is based on the hypothesis that an extract is an elaboration of the important concepts to some permissible extent and it is controlled by the given summary length restriction. In other words, our method of text summarization chooses a subset of sentences from a document that maximizes the important concepts in the final summary. To allow diverse information in the summary, for each important concept, we select one sentence that is the best possible elaboration of the concept. Accordingly, the most important concept will contribute first to the summary, then to the second best concept, and so on. To prove the effectiveness of our proposed summarization method, we have compared it to some state-of-the art summarization systems and the results show that the proposed method outperforms the existing systems to which it is compared.

Summarization and Evaluation; Where are we today?!

  • Shamsfard, Mehrnoush;Saffarian, Amir;Ghodratnama, Samaneh
    • 한국언어정보학회:학술대회논문집
    • /
    • 한국언어정보학회 2007년도 정기학술대회
    • /
    • pp.422-429
    • /
    • 2007
  • The rapid growth of the online information services causes the problem of information explosion. Automatic text summarization techniques are essential for dealing with this problem. There are different approaches to text summarization and different systems have used one or a combination of them. Considering the wide variety of summarization techniques there should be an evaluation mechanism to assess the process of summarization. The evaluation of automatic summarization is important and challenging, since in general it is difficult to agree on an ideal summary of a text. Currently evaluating summaries is a laborious task that could not be done simply by human so automatic evaluation techniques are appearing to help this matter. In this paper, we will take a look at summarization approaches and examine summarizers' general architecture. The importance of evaluation methods is discussed and the need to find better automatic systems to evaluate summaries is studied.

  • PDF

Citation-based Article Summarization using a Combination of Lexical Text Similarities: Evaluation with Computational Linguistics Literature Summarization Datasets

  • Kang, In-Su
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권7호
    • /
    • pp.31-37
    • /
    • 2019
  • Citation-based article summarization is to create a shortened text for an academic article, reflecting the content of citing sentences which contain other's thoughts about the target article to be summarized. To deal with the problem, this study introduces an extractive summarization method based on calculating a linear combination of various sentence salience scores, which represent the degrees to which a candidate sentence reflects the content of author's abstract text, reader's citing text, and the target article to be summarized. In the current study, salience scores are obtained by computing surface-level textual similarities. Experiments using CL-SciSumm datasets show that the proposed method parallels or outperforms the previous approaches in ROUGE evaluations against SciSumm-2017 human summaries and SciSumm-2016/2017 community summaries.

Multi-layered attentional peephole convolutional LSTM for abstractive text summarization

  • Rahman, Md. Motiur;Siddiqui, Fazlul Hasan
    • ETRI Journal
    • /
    • 제43권2호
    • /
    • pp.288-298
    • /
    • 2021
  • Abstractive text summarization is a process of making a summary of a given text by paraphrasing the facts of the text while keeping the meaning intact. The manmade summary generation process is laborious and time-consuming. We present here a summary generation model that is based on multilayered attentional peephole convolutional long short-term memory (MAPCoL; LSTM) in order to extract abstractive summaries of large text in an automated manner. We added the concept of attention in a peephole convolutional LSTM to improve the overall quality of a summary by giving weights to important parts of the source text during training. We evaluated the performance with regard to semantic coherence of our MAPCoL model over a popular dataset named CNN/Daily Mail, and found that MAPCoL outperformed other traditional LSTM-based models. We found improvements in the performance of MAPCoL in different internal settings when compared to state-of-the-art models of abstractive text summarization.

Text Summarization on Large-scale Vietnamese Datasets

  • Ti-Hon, Nguyen;Thanh-Nghi, Do
    • Journal of information and communication convergence engineering
    • /
    • 제20권4호
    • /
    • pp.309-316
    • /
    • 2022
  • This investigation is aimed at automatic text summarization on large-scale Vietnamese datasets. Vietnamese articles were collected from newspaper websites and plain text was extracted to build the dataset, that included 1,101,101 documents. Next, a new single-document extractive text summarization model was proposed to evaluate this dataset. In this summary model, the k-means algorithm is used to cluster the sentences of the input document using different text representations, such as BoW (bag-of-words), TF-IDF (term frequency - inverse document frequency), Word2Vec (Word-to-vector), Glove, and FastText. The summary algorithm then uses the trained k-means model to rank the candidate sentences and create a summary with the highest-ranked sentences. The empirical results of the F1-score achieved 51.91% ROUGE-1, 18.77% ROUGE-2 and 29.72% ROUGE-L, compared to 52.33% ROUGE-1, 16.17% ROUGE-2, and 33.09% ROUGE-L performed using a competitive abstractive model. The advantage of the proposed model is that it can perform well with O(n,k,p) = O(n(k+2/p)) + O(nlog2n) + O(np) + O(nk2) + O(k) time complexity.

문장 수반 관계를 고려한 문서 요약 (Document Summarization Considering Entailment Relation between Sentences)

  • 권영대;김누리;이지형
    • 정보과학회 논문지
    • /
    • 제44권2호
    • /
    • pp.179-185
    • /
    • 2017
  • 문서의 요약은 요약문 내의 문장들끼리 서로 연관성 있게 이어져야 하고 하나의 짜임새 있는 글이 되어야 한다. 본 논문에서는 위의 목적을 달성하기 위해 문장 간의 유사도와 수반 관계(Entailment)를 고려하여 문서 내에서 연관성이 크고 의미, 개념적인 연결성이 높은 문장들을 추출할 수 있도록 하였다. 본 논문에서는 Recurrent Neural Network 기반의 문장 관계 추론 모델과 그래프 기반의 랭킹(Graph-based ranking) 알고리즘을 혼합하여 단일 문서 추출요약 작업에 적용한 새로운 알고리즘인 TextRank-NLI를 제안한다. 새로운 알고리즘의 성능을 평가하기 위해 기존의 문서요약 알고리즘인 TextRank와 동일한 데이터 셋을 사용하여 성능을 비교 분석하였으며 기존의 알고리즘보다 약 2.3% 더 나은 성능을 보이는 것을 확인하였다.

Improving Abstractive Summarization by Training Masked Out-of-Vocabulary Words

  • Lee, Tae-Seok;Lee, Hyun-Young;Kang, Seung-Shik
    • Journal of Information Processing Systems
    • /
    • 제18권3호
    • /
    • pp.344-358
    • /
    • 2022
  • Text summarization is the task of producing a shorter version of a long document while accurately preserving the main contents of the original text. Abstractive summarization generates novel words and phrases using a language generation method through text transformation and prior-embedded word information. However, newly coined words or out-of-vocabulary words decrease the performance of automatic summarization because they are not pre-trained in the machine learning process. In this study, we demonstrated an improvement in summarization quality through the contextualized embedding of BERT with out-of-vocabulary masking. In addition, explicitly providing precise pointing and an optional copy instruction along with BERT embedding, we achieved an increased accuracy than the baseline model. The recall-based word-generation metric ROUGE-1 score was 55.11 and the word-order-based ROUGE-L score was 39.65.

신문기사와 소셜 미디어를 활용한 한국어 문서요약 데이터 구축 (Building a Korean Text Summarization Dataset Using News Articles of Social Media)

  • 이경호;박요한;이공주
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권8호
    • /
    • pp.251-258
    • /
    • 2020
  • 문서 요약을 위한 학습 데이터는 문서와 그 요약으로 구성된다. 기존의 문서 요약 데이터는 사람이 수동으로 요약을 작성하였기 때문에 대량의 데이터 확보가 어려웠다. 그렇기 때문에 온라인으로 쉽게 수집 가능하며 문서의 품질이 우수한 인터넷 신문기사가 문서 요약 연구에 많이 활용되어 왔다. 본 연구에서는 언론사가 소셜 미디어에 게시한 설명글과 제목, 부제를 본문의 요약으로 사용하여 한국어 문서 요약 데이터를 구성하는 것을 제안한다. 약 425,000개의 신문기사와 그 요약데이터를 구축할 수 있었다. 구성한 데이터의 유용성을 보이기 위해 추출 요약 시스템을 구현하였다. 본 연구에서 구축한 데이터로 학습한 교사 학습 모델과 비교사 학습 모델의 성능을 비교하였다. 실험 결과 제안한 데이터로 학습한 모델이 비교사 학습 알고리즘에 비해 더 높은 ROUGE 점수를 보였다.

Joint Hierarchical Semantic Clipping and Sentence Extraction for Document Summarization

  • Yan, Wanying;Guo, Junjun
    • Journal of Information Processing Systems
    • /
    • 제16권4호
    • /
    • pp.820-831
    • /
    • 2020
  • Extractive document summarization aims to select a few sentences while preserving its main information on a given document, but the current extractive methods do not consider the sentence-information repeat problem especially for news document summarization. In view of the importance and redundancy of news text information, in this paper, we propose a neural extractive summarization approach with joint sentence semantic clipping and selection, which can effectively solve the problem of news text summary sentence repetition. Specifically, a hierarchical selective encoding network is constructed for both sentence-level and document-level document representations, and data containing important information is extracted on news text; a sentence extractor strategy is then adopted for joint scoring and redundant information clipping. This way, our model strikes a balance between important information extraction and redundant information filtering. Experimental results on both CNN/Daily Mail dataset and Court Public Opinion News dataset we built are presented to show the effectiveness of our proposed approach in terms of ROUGE metrics, especially for redundant information filtering.

완전성과 간결성을 고려한 텍스트 요약 품질의 자동 평가 기법 (Automatic Quality Evaluation with Completeness and Succinctness for Text Summarization)

  • 고은정;김남규
    • 지능정보연구
    • /
    • 제24권2호
    • /
    • pp.125-148
    • /
    • 2018
  • 다양한 스마트 기기 및 관련 서비스의 증가에 따라 텍스트 데이터가 폭발적으로 증가하고 있으며, 이로 인해 방대한 문서로부터 필요한 정보만을 추려내는 작업은 더욱 어려워졌다. 따라서 텍스트 데이터로부터 핵심 내용을 자동으로 요약하여 제공할 수 있는 텍스트 자동 요약 기술이 최근 더욱 주목을 받고 있다. 텍스트 요약 기술은 뉴스 요약 서비스, 개인정보 약관 요약 서비스 등을 통해 현업에서도 이미 활발하게 적용되고 있으며, 학계에서도 문서의 주요 요소를 선별하여 제공하는 추출(Extraction) 접근법과 문서의 요소를 발췌한 뒤 이를 조합하여 새로운 문장을 구성하는 생성(Abstraction) 접근법에 따라 많은 연구가 이루어지고 있다. 하지만 문서의 자동 요약 기술에 비해, 자동으로 요약된 문서의 품질을 평가하는 기술은 상대적으로 많은 진전을 이루지 못하였다. 요약문의 품질 평가를 다룬 기존의 대부분의 연구들은 사람이 수작업으로 요약문을 작성하여 이를 기준 문서(Reference Document)로 삼고, 자동 요약문과 기준 문서와의 유사도를 측정하는 방식으로 수행되었다. 하지만 이러한 방식은 기준 문서의 작성 과정에 막대한 시간과 비용이 소요될 뿐 아니라 요약자의 주관에 의해 평가 결과가 다르게 나타날 수 있다는 한계를 갖는다. 한편 이러한 한계를 극복하기 위한 연구도 일부 수행되었는데, 대표적으로 전문에 대해 차원 축소를 수행하고 이렇게 축소된 전문과 자동 요약문의 유사도를 측정하는 기법이 최근 고안된 바 있다. 이 방식은 원문에서 출현 빈도가 높은 어휘가 요약문에 많이 나타날수록 해당 요약문의 품질이 우수한 것으로 평가하게 된다. 하지만 요약이란 본질적으로 많은 내용을 줄여서 표현하면서도 내용의 누락을 최소화하는 것을 의미하므로, 단순히 빈도수에 기반한 "좋은 요약"이 항상 본질적 의미에서의 "좋은 요약"을 의미한다고 보는 것은 무리가 있다. 요약문 품질 평가의 이러한 기존 연구의 한계를 극복하기 위해, 본 연구에서는 요약의 본질에 기반한 자동 품질 평가 방안을 제안한다. 구체적으로 요약문의 문장 중 서로 중복되는 내용이 얼마나 적은지를 나타내는 요소로 간결성(Succinctness) 개념을 정의하고, 원문의 내용 중 요약문에 포함되지 않은 내용이 얼마나 적은지를 나타내는 요소로 완전성(Completeness)을 정의한다. 본 연구에서는 간결성과 완전성의 개념을 적용한 요약문 품질 자동 평가 방법론을 제안하고, 이를 TripAdvisor 사이트 호텔 리뷰의 요약 및 평가에 적용한 실험 결과를 소개한다.