In the medical web forum, people share medical experience and information as patients and patents' families. Some people search medical information written in non-expert language and some people offer words of comport to who are suffering from diseases. Medical web forums play a role of the informative support and the emotional support. We propose the automatic classification model of articles in the medical web forum into the information support and emotional support. We extract text features of articles in web forum using text mining techniques from the perspective of linguistics and then perform supervised learning to classify texts into the information support and the emotional support types. We adopt the Support Vector Machine (SVM), Naive-Bayesian, decision tree for automatic classification. We apply the proposed model to the HealthBoards forum, which is also one of the largest and most dynamic medical web forum.
Dong-hun, Lee;Chan, Hur;Hyeyoung, Park;Sang-hyo, Park
IEMEK Journal of Embedded Systems and Applications
/
v.17
no.6
/
pp.347-353
/
2022
In this paper, we propose a method that performs a text-video retrieval model by replacing video properties using captions. In general, the exisiting embedding-based models consist of both joint embedding space construction and the CNN-based video encoding process, which requires a lot of computation in the training as well as the inference process. To overcome this problem, we introduce a video-captioning module to replace the visual property of video with captions generated by the video-captioning module. To be specific, we adopt the caption generator that converts candidate videos into captions in the inference process, thereby enabling direct comparison between the text given as a query and candidate videos without joint embedding space. Through the experiment, the proposed model successfully reduces the amount of computation and inference time by skipping the visual processing process and joint embedding space construction on two benchmark dataset, MSR-VTT and VATEX.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.10a
/
pp.553-554
/
2021
This paper proposes a convergence model based on LSTM and CNN deep learning techniques, and obtains good results by applying it to multi-category news datasets. According to the experiment, the deep learning-based fusion model significantly improved the precision and accuracy of text sentiment classification.
The Journal of the Convergence on Culture Technology
/
v.10
no.5
/
pp.667-671
/
2024
Professional job training for government officers emphasizes establishing desirable values as public officials and improving professionalism in public service. To provide customized education, some studies are analyzed factors affecting education satisfaction. However, there is a lack of research predicting education satisfaction with educational contents. Therefore, we propose a deep learning-based regression model that predicts government officer education satisfaction with educational contents. We use education information data for government officer. We use one-hot encoding to categorize variables collected in text format, such as education targets, education classifications, and education types. We quantify the education contents stored in text format as TF-IDF. We train our deep learning-based regression model and validate model performance with 10-Fold Cross Validation. Our proposed model showed 99.87% accuracy on test sets. We expect that customized education recommendations based on our model will help provide and improve optimized education content.
Text Generation is a process of generating comprehensible texts in human languages from some underlying non-linguistic representation of information. Among several sub-processes for text generation to generate coherent texts, this paper concerns referring expression generation which produces different types of expressions to refer to previously-mentioned things in a discourse. Specifically, we focus on pronominalization by zero pronouns which frequently occur in Korean. To build a generation model of referring expressions for Korean, several features are identified based on grammatical information and cost-based centering model, which are applied to various machine learning techniques. We demonstrate that our proposed features are well defined to explain pronominalization, especially pronominalization by zero pronouns in Korean, through 95 texts from three genres - Descriptive texts, News, and Short Aesop's Fables. We also show that our model significantly outperforms previous ones with a 99.9% confidence level by a T-test.
Journal of The Korean Association of Information Education
/
v.23
no.4
/
pp.355-362
/
2019
Elementary students are studying software training to teach coding education using text-based languages such as Python. In general, these higher-level languages support learning activities in combination with a kits for physical computing or various programming languages, in contrast to block-coding programming languages. In this study, we conducted a coding project based on computational thinking using the ARCS model to overcome the difficulties of text-based language. The results of the experiment show that students are generally confident and interested in programming. Especially, the understanding of repetition, function, and object was high in the change of computational thinking power, so this trend is believed to be due to the use of text-based languages and the Python module.
본 연구는 학습자 중심의 구성주의 학습 모형인 문제중심학습( Problem-Based Learning: PBL) 모형 개발을 통한 효과적인 HTML 학습 방안의 탐색을 위해 수행되었다. 초등학생이 HTML( Hyper Text Markup Language )학습을 통해 프로그래밍을 학습할 때 단순문법을 익히는 것을 넘어 프로그래밍 언어를 자율적이고 창의적으로 활용하기 위해서는 고차원적인 자기 주도적 학습 능력과 문제 해결 능력이 요구된다. 이를 위해 본 논문은 문제중심학습의 기존모형들이 갖고 있는 특징을 기반으로 하여 개발되었다. 본 연구의 문제중심학습의 절차는 문제와의 만남- 문제의 해결 전략 세우기- 문제 해결을 위한 정보수집- 문제의 해결 -평가 단계와 같다. 학습과정 에세이 기록을 통해 학습절차를 설계하고 과정을 돌이킬 수 있으며 피드백 과정을 통하여 학습의 결손을 방지하도록 하였다. 구성주의 학습 모형인 문제중심학습(PBL)을 HTML 언어교육에 적용 할 경우 학습자의 자기 주도적 학습 능력과 의사소통능력, 창의력 논리력을 키울 수 있을 것으로 기대된다.
E-learning has improved the educational effect by making it possible to learn anytime and anywhere by escaping the traditional infusion education. As the use of e-learning system increases with the increasing popularity of e-learning, it has become important to measure e-learning satisfaction. In this study, we used the mixed research method to identify satisfaction factors of e-learning. The mixed research method is to perform both qualitative research and quantitative research at the same time. As a quantitative research, we collected reviews in Udemy.com by text mining. Then we classified high and low rated lectures and applied topic modeling technique to derive factors from reviews. Also, this study conducted an in-depth 1:1 interview on e-learning learners as a qualitative research. By combining these results, we were able to derive factors of e-learning satisfaction and dissatisfaction. Based on these factors, we suggested ways to improve e-learning satisfaction. In contrast to the fact that survey-based research was mainly conducted in the past, this study collects actual data by text mining. The academic significance of this study is that the results of the topic modeling are combined with the factor based on the information system success model.
Journal of the Korean Society for information Management
/
v.19
no.4
/
pp.35-51
/
2002
Inductive learning and classification techniques have been employed in various research and applications that organize textual data to solve the problem of information access. In this study, we develop hybrid model combination methods which incorporate the concepts and techniques for multiple modeling algorithms to improve the accuracy of text classification, and conduct experiments to evaluate the performances of proposed schemes. Boosted stacking, one of the extended stacking schemes proposed in this study yields higher accuracy relative to the conventional model combination methods and single classifiers.
Lee, Hyun Sang;Jo, Bo Geun;Oh, Se Hwan;Ha, Sung Ho
The Journal of Information Systems
/
v.30
no.3
/
pp.201-216
/
2021
Purpose The purpose of this study is to analyze the trend of patent technology in textile materials using text mining methodology based on Dynamic Embedded Topic Model and Structural Topic Model. It is expected that this study will have positive impact on revitalizing and developing textile materials industry as finding out technology trends. Design/methodology/approach The data used in this study is 866 domestic patent text data in textile material from 1974 to 2020. In order to analyze technology trends from various aspect, Dynamic Embedded Topic Model and Structural Topic Model mechanism were used. The word embedding technique used in DETM is the GloVe technique. For Stable learning of topic modeling, amortized variational inference was performed based on the Recurrent Neural Network. Findings As a result of this analysis, it was found that 'manufacture' topics had the largest share among the six topics. Keyword trend analysis found the fact that natural and nanotechnology have recently been attracting attention. The metadata analysis results showed that manufacture technologies could have a high probability of patent registration in entire time series, but the analysis results in recent years showed that the trend of elasticity and safety technology is increasing.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.