• Title/Summary/Keyword: Text Model learning

Search Result 436, Processing Time 0.025 seconds

The Informative Support and Emotional Support Classification Model for Medical Web Forums using Text Analysis (의료 웹포럼에서의 텍스트 분석을 통한 정보적 지지 및 감성적 지지 유형의 글 분류 모델)

  • Woo, Jiyoung;Lee, Min-Jung;Ku, Yungchang
    • Journal of Information Technology Services
    • /
    • v.11 no.sup
    • /
    • pp.139-152
    • /
    • 2012
  • In the medical web forum, people share medical experience and information as patients and patents' families. Some people search medical information written in non-expert language and some people offer words of comport to who are suffering from diseases. Medical web forums play a role of the informative support and the emotional support. We propose the automatic classification model of articles in the medical web forum into the information support and emotional support. We extract text features of articles in web forum using text mining techniques from the perspective of linguistics and then perform supervised learning to classify texts into the information support and the emotional support types. We adopt the Support Vector Machine (SVM), Naive-Bayesian, decision tree for automatic classification. We apply the proposed model to the HealthBoards forum, which is also one of the largest and most dynamic medical web forum.

A Study on the Alternative Method of Video Characteristics Using Captioning in Text-Video Retrieval Model (텍스트-비디오 검색 모델에서의 캡션을 활용한 비디오 특성 대체 방안 연구)

  • Dong-hun, Lee;Chan, Hur;Hyeyoung, Park;Sang-hyo, Park
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.6
    • /
    • pp.347-353
    • /
    • 2022
  • In this paper, we propose a method that performs a text-video retrieval model by replacing video properties using captions. In general, the exisiting embedding-based models consist of both joint embedding space construction and the CNN-based video encoding process, which requires a lot of computation in the training as well as the inference process. To overcome this problem, we introduce a video-captioning module to replace the visual property of video with captions generated by the video-captioning module. To be specific, we adopt the caption generator that converts candidate videos into captions in the inference process, thereby enabling direct comparison between the text given as a query and candidate videos without joint embedding space. Through the experiment, the proposed model successfully reduces the amount of computation and inference time by skipping the visual processing process and joint embedding space construction on two benchmark dataset, MSR-VTT and VATEX.

New Text Sentiment Classification Method (새로운 텍스트 감정 분류 방법)

  • Shin, Seong-Yoon;Lee, Hyun-Chang;Shin, Kwang-Seong;Kim, Hyung-Jin;Lee, Jae-Wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.553-554
    • /
    • 2021
  • This paper proposes a convergence model based on LSTM and CNN deep learning techniques, and obtains good results by applying it to multi-category news datasets. According to the experiment, the deep learning-based fusion model significantly improved the precision and accuracy of text sentiment classification.

  • PDF

A Deep Learning-based Regression Model for Predicting Government Officer Education Satisfaction (공무원 직무 전문교육 만족도 예측을 위한 딥러닝 기반 회귀 모델 설계)

  • Sumin Oh;Sungyeon Yoon;Minseo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.5
    • /
    • pp.667-671
    • /
    • 2024
  • Professional job training for government officers emphasizes establishing desirable values as public officials and improving professionalism in public service. To provide customized education, some studies are analyzed factors affecting education satisfaction. However, there is a lack of research predicting education satisfaction with educational contents. Therefore, we propose a deep learning-based regression model that predicts government officer education satisfaction with educational contents. We use education information data for government officer. We use one-hot encoding to categorize variables collected in text format, such as education targets, education classifications, and education types. We quantify the education contents stored in text format as TF-IDF. We train our deep learning-based regression model and validate model performance with 10-Fold Cross Validation. Our proposed model showed 99.87% accuracy on test sets. We expect that customized education recommendations based on our model will help provide and improve optimized education content.

Generation of Natural Referring Expressions by Syntactic Information and Cost-based Centering Model (구문 정보와 비용기반 중심화 이론에 기반한 자연스러운 지시어 생성)

  • Roh Ji-Eun;Lee Jong-Hyeok
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.12
    • /
    • pp.1649-1659
    • /
    • 2004
  • Text Generation is a process of generating comprehensible texts in human languages from some underlying non-linguistic representation of information. Among several sub-processes for text generation to generate coherent texts, this paper concerns referring expression generation which produces different types of expressions to refer to previously-mentioned things in a discourse. Specifically, we focus on pronominalization by zero pronouns which frequently occur in Korean. To build a generation model of referring expressions for Korean, several features are identified based on grammatical information and cost-based centering model, which are applied to various machine learning techniques. We demonstrate that our proposed features are well defined to explain pronominalization, especially pronominalization by zero pronouns in Korean, through 95 texts from three genres - Descriptive texts, News, and Short Aesop's Fables. We also show that our model significantly outperforms previous ones with a 99.9% confidence level by a T-test.

Development of computational thinking based Coding_Projects using the ARCS model (ARCS 모형을 적용한 컴퓨팅사고력 기반 코딩 프로젝트 개발)

  • Nam, Choong Mo;Kim, Chong Woo
    • Journal of The Korean Association of Information Education
    • /
    • v.23 no.4
    • /
    • pp.355-362
    • /
    • 2019
  • Elementary students are studying software training to teach coding education using text-based languages such as Python. In general, these higher-level languages support learning activities in combination with a kits for physical computing or various programming languages, in contrast to block-coding programming languages. In this study, we conducted a coding project based on computational thinking using the ARCS model to overcome the difficulties of text-based language. The results of the experiment show that students are generally confident and interested in programming. Especially, the understanding of repetition, function, and object was high in the change of computational thinking power, so this trend is believed to be due to the use of text-based languages and the Python module.

Design of PBL(Problem - Based Learning) instructional model for HTML (Hyper Text Markup Language) learning (HTML 학습을 위한 문제중심학습 (Problem -Based Learning) 모형 개발)

  • Lee, Sun-Hyun;Kim, Kap-Su
    • 한국정보교육학회:학술대회논문집
    • /
    • 2005.08a
    • /
    • pp.401-408
    • /
    • 2005
  • 본 연구는 학습자 중심의 구성주의 학습 모형인 문제중심학습( Problem-Based Learning: PBL) 모형 개발을 통한 효과적인 HTML 학습 방안의 탐색을 위해 수행되었다. 초등학생이 HTML( Hyper Text Markup Language )학습을 통해 프로그래밍을 학습할 때 단순문법을 익히는 것을 넘어 프로그래밍 언어를 자율적이고 창의적으로 활용하기 위해서는 고차원적인 자기 주도적 학습 능력과 문제 해결 능력이 요구된다. 이를 위해 본 논문은 문제중심학습의 기존모형들이 갖고 있는 특징을 기반으로 하여 개발되었다. 본 연구의 문제중심학습의 절차는 문제와의 만남- 문제의 해결 전략 세우기- 문제 해결을 위한 정보수집- 문제의 해결 -평가 단계와 같다. 학습과정 에세이 기록을 통해 학습절차를 설계하고 과정을 돌이킬 수 있으며 피드백 과정을 통하여 학습의 결손을 방지하도록 하였다. 구성주의 학습 모형인 문제중심학습(PBL)을 HTML 언어교육에 적용 할 경우 학습자의 자기 주도적 학습 능력과 의사소통능력, 창의력 논리력을 키울 수 있을 것으로 기대된다.

  • PDF

An Exploratory Study of e-Learning Satisfaction: A Mixed Methods of Text Mining and Interview Approaches (이러닝 만족도 증진을 위한 탐색적 연구: 텍스트 마이닝과 인터뷰 혼합방법론)

  • Sun-Gyu Lee;Soobin Choi;Hee-Woong Kim
    • Information Systems Review
    • /
    • v.21 no.1
    • /
    • pp.39-59
    • /
    • 2019
  • E-learning has improved the educational effect by making it possible to learn anytime and anywhere by escaping the traditional infusion education. As the use of e-learning system increases with the increasing popularity of e-learning, it has become important to measure e-learning satisfaction. In this study, we used the mixed research method to identify satisfaction factors of e-learning. The mixed research method is to perform both qualitative research and quantitative research at the same time. As a quantitative research, we collected reviews in Udemy.com by text mining. Then we classified high and low rated lectures and applied topic modeling technique to derive factors from reviews. Also, this study conducted an in-depth 1:1 interview on e-learning learners as a qualitative research. By combining these results, we were able to derive factors of e-learning satisfaction and dissatisfaction. Based on these factors, we suggested ways to improve e-learning satisfaction. In contrast to the fact that survey-based research was mainly conducted in the past, this study collects actual data by text mining. The academic significance of this study is that the results of the topic modeling are combined with the factor based on the information system success model.

Automatic Text Categorization Using Hybrid Multiple Model Schemes (하이브리드 다중모델 학습기법을 이용한 자동 문서 분류)

  • 명순희;김인철
    • Journal of the Korean Society for information Management
    • /
    • v.19 no.4
    • /
    • pp.35-51
    • /
    • 2002
  • Inductive learning and classification techniques have been employed in various research and applications that organize textual data to solve the problem of information access. In this study, we develop hybrid model combination methods which incorporate the concepts and techniques for multiple modeling algorithms to improve the accuracy of text classification, and conduct experiments to evaluate the performances of proposed schemes. Boosted stacking, one of the extended stacking schemes proposed in this study yields higher accuracy relative to the conventional model combination methods and single classifiers.

Research of Patent Technology Trends in Textile Materials: Text Mining Methodology Using DETM & STM (섬유소재 분야 특허 기술 동향 분석: DETM & STM 텍스트마이닝 방법론 활용)

  • Lee, Hyun Sang;Jo, Bo Geun;Oh, Se Hwan;Ha, Sung Ho
    • The Journal of Information Systems
    • /
    • v.30 no.3
    • /
    • pp.201-216
    • /
    • 2021
  • Purpose The purpose of this study is to analyze the trend of patent technology in textile materials using text mining methodology based on Dynamic Embedded Topic Model and Structural Topic Model. It is expected that this study will have positive impact on revitalizing and developing textile materials industry as finding out technology trends. Design/methodology/approach The data used in this study is 866 domestic patent text data in textile material from 1974 to 2020. In order to analyze technology trends from various aspect, Dynamic Embedded Topic Model and Structural Topic Model mechanism were used. The word embedding technique used in DETM is the GloVe technique. For Stable learning of topic modeling, amortized variational inference was performed based on the Recurrent Neural Network. Findings As a result of this analysis, it was found that 'manufacture' topics had the largest share among the six topics. Keyword trend analysis found the fact that natural and nanotechnology have recently been attracting attention. The metadata analysis results showed that manufacture technologies could have a high probability of patent registration in entire time series, but the analysis results in recent years showed that the trend of elasticity and safety technology is increasing.