• Title/Summary/Keyword: Text Mining for Korean

Search Result 638, Processing Time 0.022 seconds

Evaluation of Vulnerability on Rural Emergency Relief Service using Text Mining (Text Mining 기법을 활용한 농촌마을 긴급구호서비스 접근 취약성 평가)

  • Woo, Jaehyeong;Park, Jinseon;Yoon, Seongsoo
    • Journal of Korean Society of Rural Planning
    • /
    • v.24 no.1
    • /
    • pp.67-74
    • /
    • 2018
  • The rural areas are large residential space with fewer people than urban areas. That is why they are vulnerable to social services such as health care and security. This research analyzed the vulnerability of emergency relief service in rural village through text mining and the weighting value have been calculated. Based on the calculated statistics data, the police facilities are the most important, While the fire fighting and hospital facilities are important as well. In addition, the distance from the emergency relief service facility to the rural village was confirmed by using Open API. By combining these results, The vulnerable areas of the rural villages and the emergency relief service facilities were calculated and classified into 5 levels. For rural areas, the 1st class will have 33 places, following by 1,179 in 2nd class, 199 in 3rd class, 17 in 4th class and 8 in 5th class. Hence in order to further supplement the vulnerable areas to emergency relief service in villages, geographical relocation and policy approach of emergency relief service facilities are necessary.

A Content Analysis for Website Usefulness Evaluation: Utilizing Text Mining Technique

  • Kwon, Do Young;Jeong, Seung Ryul
    • Journal of Internet Computing and Services
    • /
    • v.16 no.4
    • /
    • pp.71-81
    • /
    • 2015
  • With the increasing influence of online media, company websites have become important communication channels between companies and customers. Companies use their websites as a marketing tool for a variety of purposes, including enhancing their image and selling products or services. Many researchers have examined the criteria, methods, and tools for website evaluation, but most have focused on usability. Prior content analyses have focused not on text content but on website components, an approach likely to produce subjective evaluations. This study attempts to objectively evaluate company websites by utilizing text mining. We analyze the usefulness of company websites by presenting visualized outputs from a business perspective, allowing practitioners to easily understand the results of the website evaluation and use them in decision making. To demonstrate our method empirically, we selected a company with a number of affiliates in Korea and analyzed the text content of their websites to assess their usefulness using natural language processing and graphics packages in R. Practitioners can easily employ our objective evaluation method, and researchers can use it to gain a new perspective on website evaluation.

What Practical Knowledge Do Teachers Share on Blogs? An Analysis Using Text-mining

  • LEE, Dongkuk;KWON, Hyuksoo
    • Educational Technology International
    • /
    • v.23 no.1
    • /
    • pp.97-127
    • /
    • 2022
  • With the recent advancement of technology, there has been an increase in professional development activities, including teachers using blogs to share practical knowledge and reflect on teaching and learning. This study was conducted to identify the contents of practical knowledge shared through the K-12 teachers' blogs. To achieve the research objective, 70,571 blog posts were collected from 329 blogs of K-12 teachers in Korean and analyzed using text mining techniques. The results of the study are as follows. First, practical knowledge sharing activities using teacher blogs have increased. Teachers posted a lot of blogs during the semester. Second, primary school teachers share various curriculum activities, reflections on project classes, class management, opinions related to education, and personal. Third, secondary school teachers share summaries and reviews of curriculum, materials related to college entrance exams, various instructional materials, opinions related to education, and personal experiences on their blogs. This study suggested that blogs are widely used as a venue for sharing practical knowledge of teachers, and that blogs can be a useful way to develop professionalism.

BIOLOGY ORIENTED TARGET SPECIFIC LITERATURE MINING FOR GPCR PATHWAY EXTRACTION (GPCR 경로 추출을 위한 생물학 기반의 목적지향 텍스트 마이닝 시스템)

  • KIm, Eun-Ju;Jung, Seol-Kyoung;Yi, Eun-Ji;Lee, Gary-Geunbae;Park, Soo-Jun
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2003.10a
    • /
    • pp.86-94
    • /
    • 2003
  • Electronically available biological literature has been accumulated exponentially in the course of time. So, researches on automatically acquiring knowledge from these tremendous data by text mining technology become more and more prosperous. However, most of the previous researches are technology oriented and are not well focused in practical extraction target, hence result in low performance and inconvenience for the bio-researchers to actually use. In this paper, we propose a more biology oriented target domain specific text mining system, that is, POSTECH bio-text mining system (POSBIOTM), for signal transduction pathway extraction, especially for G protein-coupled receptor (GPCR) pathway. To reflect more domain knowledge, we specify the concrete target for pathway extraction and define the minimal pathway domain ontology. Under this conceptual model, POSBIOTM extracts interactions and entities of pathways from the full biological articles using a machine learning oriented extraction method and visualizes the pathways using JDesigner module provided in the system biology workbench (SBW) [14]

  • PDF

The Frequency Analysis of Teacher's Emotional Response in Mathematics Class (수학 담화에서 나타나는 교사의 감성적 언어 빈도 분석)

  • Son, Bok Eun;Ko, Ho Kyoung
    • Communications of Mathematical Education
    • /
    • v.32 no.4
    • /
    • pp.555-573
    • /
    • 2018
  • The purpose of this study is to identify the emotional language of math teachers in math class using text mining techniques. For this purpose, we collected the discourse data of the teachers in the class by using the excellent class video. The analysis of the extracted unstructured data proceeded to three stages: data collection, data preprocessing, and text mining analysis. According to text mining analysis, there was few emotional language in teacher's response in mathematics class. This result can infer the characteristics of mathematics class in the aspect of affective domain.

Analysis of New Market Structure Using Text Mining and Consumer Perceptions Map: The Case of the Korean Craft Beer Market (소비자 리뷰 텍스트마이닝을 이용한 신생 산업 시장 구조 분석: 국내 수제 맥주 시장의 경쟁 관계 및 시장 구조를 중심으로)

  • Lee, Yeon Soo;Kim, Hye Jin
    • The Journal of Information Systems
    • /
    • v.30 no.2
    • /
    • pp.189-214
    • /
    • 2021
  • Purpose This paper aims to effectively utilize user-generated content (UGC) and analyze the market structure of a relatively new market which lacks rich user review information. Specifically, we propose a domain-specific text mining tool for the domestic craft beer market and visualize the market structure by incorporating how individual beer products are positioned in the perceptual map of consumers. Design/methodology/approach We collect user review information from Naver blogs, and extract words that describe beers. We identify semantic relationships between beer products through text mining, and then depending on these semantic relationships, construct a graph representing the market structure of the domestic craft beer market based on the consumer's perceptual map. Findings First, beer products produced in the same brewery are perceived as very similar to consumers. Second, only two products, 'Heukdang Milky Stout' and 'Gompyo', was noticeably distinguishable from other products. Third, even though 'Gyeongbokgung' is from a different brewery, it is located very close to the products of 'Jeju Beer' brewery such as 'Jeju Baeknokdam Ale' and 'Seongsan Ilchulbong Ale', which suggests the influence of 'landmark series.' We successfully show that our methodology effectively describes the market structure of the craft beer market.

Evaluating the Characteristics of Subversive Basic Fashion Utilizing Text Mining Techniques (텍스트 마이닝(text mining) 기법을 활용한 서브버시브 베이식(subversive basics) 패션의 특성)

  • Minjung Im
    • Journal of Fashion Business
    • /
    • v.27 no.5
    • /
    • pp.78-92
    • /
    • 2023
  • Fashion trends are actively disseminated through social media, which influences both their propagation and consumption. This study explored how users perceive subversive basic fashion in social media videos, by examining the associated concepts and characteristics. In addition, the factors contributing to the style's social media dissemination were identified and its distinctive features were analyzed. Through text mining analysis, 80 keywords were selected for semantic network and CONCOR analysis. TF-IDF and N-gram results indicate that subversive basic fashion involves transformative design techniques such as cutting or layering garments, emphasizing the body with thin fabrics, and creating bold visual effects. Topic modeling suggests that this fashion forms a subculture that resists mainstream norms, seeking individuality by creatively transforming the existing garments. CONCOR analysis categorized the style into six groups: forward-thinking unconventional fashion, bold and unique style, creative reworking, item utilization and combination, pursuit of easy and convenient fashion, and contemporary sensibility. Consumer actions, linked to social media, were shown to involve easily transforming and pursuing personalized styles. Furthermore, creating new styles through the existing clothing is seen as an economic and creative activity that fosters network formation and interaction. This study is significant as it addresses language expression limitations and subjectivity issues in fashion image analysis, revealing factors contributing to content reproduction through user-perceived design concepts and social media-conveyed fashion characteristics.

Probabilistic filtering for a biological knowledge discovery system with text mining and automatic inference (텍스트 마이닝 및 자동 추론 기반 생물학 지식 발견 시스템을 위한 확률 기반 필터링)

  • Lee, Hee-Jin;Park, Jong-C.
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.2
    • /
    • pp.139-147
    • /
    • 2012
  • In this paper, we discuss the structure of biological knowledge discovery system based on text mining and automatic inference. Given a set of biology documents, the system produces a new hypothesis in an integrated manner. The text mining module of the system first extracts the 'event' information of predefined types from the documents. The inference module then produces a new hypothesis based on the extracted results. Such an integrated system can use information more up-to-date and diverse than other automatic knowledge discovery systems use. However, for the success of such an integrated system, the precision of the text mining module becomes crucial, as any hypothesis based on a single piece of false positive information would highly likely be erroneous. In this paper, we propose a probabilistic filtering method that filters out false positives from the extraction results. Our proposed method shows higher performance over an occurrence-based baseline method.

Fake News Detection for Korean News Using Text Mining and Machine Learning Techniques (텍스트 마이닝과 기계 학습을 이용한 국내 가짜뉴스 예측)

  • Yun, Tae-Uk;Ahn, Hyunchul
    • Journal of Information Technology Applications and Management
    • /
    • v.25 no.1
    • /
    • pp.19-32
    • /
    • 2018
  • Fake news is defined as the news articles that are intentionally and verifiably false, and could mislead readers. Spread of fake news may provoke anxiety, chaos, fear, or irrational decisions of the public. Thus, detecting fake news and preventing its spread has become very important issue in our society. However, due to the huge amount of fake news produced every day, it is almost impossible to identify it by a human. Under this context, researchers have tried to develop automated fake news detection method using Artificial Intelligence techniques over the past years. But, unfortunately, there have been no prior studies proposed an automated fake news detection method for Korean news. In this study, we aim to detect Korean fake news using text mining and machine learning techniques. Our proposed method consists of two steps. In the first step, the news contents to be analyzed is convert to quantified values using various text mining techniques (Topic Modeling, TF-IDF, and so on). After that, in step 2, classifiers are trained using the values produced in step 1. As the classifiers, machine learning techniques such as multiple discriminant analysis, case based reasoning, artificial neural networks, and support vector machine can be applied. To validate the effectiveness of the proposed method, we collected 200 Korean news from Seoul National University's FactCheck (http://factcheck.snu.ac.kr). which provides with detailed analysis reports from about 20 media outlets and links to source documents for each case. Using this dataset, we will identify which text features are important as well as which classifiers are effective in detecting Korean fake news.

Analysis of Influencing Factors on Asbestos Demolitions Using a Text Mining Method (텍스트 마이닝 기법을 활용한 석면해체·제거작업 영향 요인 분석)

  • Lee, Jae-Woo;Kim, Do-Hyun;Kim, Yu-Jin;Noh, Jae-Yun;Han, Seungwoo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.39-40
    • /
    • 2022
  • The use of asbestos has been completely prohibited in Korea since 2015. Therefore, nationally, the asbestos demolitions in the building are actively underway. In the process of demolishing asbestos, scattering dust occurs, which poses a risk to human body. These dusts causes fatal disease, and especially there is an increasing concern of safety about construction workers and building users. Until this day, however, only few researches have been conducted on asbestos demolishing process. Accordingly, it is necessary to analyze key factors and to develop a safety prediction model for workers. This study is an early stage of building quantified DB, and aims to actualize the safety problems of asbestos demolishing process using text mining method.

  • PDF