• Title/Summary/Keyword: Text Input Method

Search Result 166, Processing Time 0.029 seconds

Implementation of Optimal User Interface based on the Voice Output Embedded System for People with Profound Communication Disorder (중증언어장애자를 위한 음성 출력 임베디드 시스템을 기반으로 한 최적의 사용자 인터페이스 구현)

  • Yoo, Byung-Hyuk;Lee, Sang-Hun;Seo, Hee-Don
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.885-886
    • /
    • 2006
  • The purpose of this study is to develop the optimal system(AAC device), which helps a person with a profound communication disorder to communicate with other people. Therefore, this system includes the user interface enhancement that is the user adaptation mode algorithm. The symbol is made with a text and an icon which is converted into Korean. The message contiol operates scanning and adjusts rate control of row-column scanning and linear scanning. This embedded system includes voice input/output and voice recording as well suggested method that could apply optimal device access algorithm from clinical environment. Therefore, we are experting that even the current system itself will be able to improve the life quality of people who need to communicate with the help of devices.

  • PDF

SEMANTIC FEATURE DETECTION FOR REAL-TIME IMAGE TRANSMISSION OF SIGN LANGUAGE AND FINGER SPELLING

  • Hou, Jin;Aoki, Yoshinao
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1662-1665
    • /
    • 2002
  • This paper proposes a novel semantic feature detection (SFD) method for real-time image transmission of sign language and finger spelling. We extract semantic information as an interlingua from input text by natural language processing, and then transmit the semantic feature detection, which actually is a parameterized action representation, to the 3-D articulated humanoid models prepared in each client in remote locations. Once the SFD is received, the virtual human will be animated by the synthesized SFD. The experimental results based on Japanese sign langauge and Chinese sign langauge demonstrate that this algorithm is effective in real-time image delivery of sign language and finger spelling.

  • PDF

Head Pointing System based Text Input Method for Person with physical disabilities (지체장애인을 위한 헤드 포인팅 시스템 기반 문자입력 방법)

  • Han, Sang-Heon;Yun, Tae-Soo;Lee, Dong-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.11a
    • /
    • pp.281-284
    • /
    • 2006
  • 본 논문은 지체장애인들의 컴퓨터 접근성을 향상시키기 위해서 Head Pointing System을 기반으로한 키보드 대체 방법을 제안한다. 먼저 컴퓨터의 접근성을 돕기위해 현재 사용되고있는 Head Pointing System에는 어떤 기능을 대체하고 있는지 간략하게 살펴보고, 본 논문에서 제안하는 방법이 이전에 사용되었던 Head Pointing System, On-Screen Keyboard를 함께 사용하여 문자를 입력하는 방식에 비해 어떤 이점이 있는 확인한다. 또한, Quikwriting 방식을 사용하여 사용자에게 단순하고 직관적인 제스쳐를 요구하도록하여 입력에 대한 부담을 낮추고, 사용자 개인의 제스쳐 특성에 따라 문자를 입력할 수 있도록 하기위해 신경망 알고리즘을 사용하였고 이를통해 Head Pointing System기반 문자입력 방법이 유용함을 확인할 수 있었다.

  • PDF

Design and Implementation of Simple Text-to-Speech System using Phoneme Units (음소단위를 이용한 소규모 문자-음성 변환 시스템의 설계 및 구현)

  • Park, Ae-Hee;Yang, Jin-Woo;Kim, Soon-Hyob
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.49-60
    • /
    • 1995
  • This paper is a study on the design and implementation of the Korean Text-to-Speech system which is used for a small and simple system. In this paper, a parameter synthesis method is chosen for speech syntheiss method, we use PARCOR(PARtial autoCORrelation) coefficient which is one of the LPC analysis. And we use phoneme for synthesis unit which is the basic unit for speech synthesis. We use PARCOR, pitch, amplitude as synthesis parameter of voice, we use residual signal, PARCOR coefficients as synthesis parameter of unvoice. In this paper, we could obtain the 60% intelligibility by using the residual signal as excitation signal of unvoiced sound. The result of synthesis experiment, synthesis of a word unit is available. The controlling of phoneme duration is necessary for synthesizing of a sentence unit. For setting up the synthesis system, PC 486, a 70[Hz]-4.5[KHz] band pass filter for speech input/output, amplifier, and TMS320C30 DSP board was used.

  • PDF

A Study on the Law2Vec Model for Searching Related Law (연관법령 검색을 위한 워드 임베딩 기반 Law2Vec 모형 연구)

  • Kim, Nari;Kim, Hyoung Joong
    • Journal of Digital Contents Society
    • /
    • v.18 no.7
    • /
    • pp.1419-1425
    • /
    • 2017
  • The ultimate goal of legal knowledge search is to obtain optimal legal information based on laws and precedent. Text mining research is actively being undertaken to meet the needs of efficient retrieval from large scale data. A typical method is to use a word embedding algorithm based on Neural Net. This paper demonstrates how to search relevant information, applying Korean law information to word embedding. First, we extracts reference laws from precedents in order and takes reference laws as input of Law2Vec. The model learns a law by predicting its surrounding context law. The algorithm then moves over each law in the corpus and repeats the training step. After the training finished, we could infer the relationship between the laws via the embedding method. The search performance was evaluated based on precision and the recall rate which are computed from how closely the results are associated to the search terms. The test result proved that what this paper proposes is much more useful compared to existing systems utilizing only keyword search when it comes to extracting related laws.

IMPLEMENTATION OF SUBSEQUENCE MAPPING METHOD FOR SEQUENTIAL PATTERN MINING

  • Trang, Nguyen Thu;Lee, Bum-Ju;Lee, Heon-Gyu;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.627-630
    • /
    • 2006
  • Sequential Pattern Mining is the mining approach which addresses the problem of discovering the existent maximal frequent sequences in a given databases. In the daily and scientific life, sequential data are available and used everywhere based on their representative forms as text, weather data, satellite data streams, business transactions, telecommunications records, experimental runs, DNA sequences, histories of medical records, etc. Discovering sequential patterns can assist user or scientist on predicting coming activities, interpreting recurring phenomena or extracting similarities. For the sake of that purpose, the core of sequential pattern mining is finding the frequent sequence which is contained frequently in all data sequences. Beside the discovery of frequent itemsets, sequential pattern mining requires the arrangement of those itemsets in sequences and the discovery of which of those are frequent. So before mining sequences, the main task is checking if one sequence is a subsequence of another sequence in the database. In this paper, we implement the subsequence matching method as the preprocessing step for sequential pattern mining. Matched sequences in our implementation are the normalized sequences as the form of number chain. The result which is given by this method is the review of matching information between input mapped sequences.

  • PDF

Implementation of Subsequence Mapping Method for Sequential Pattern Mining

  • Trang Nguyen Thu;Lee Bum-Ju;Lee Heon-Gyu;Park Jeong-Seok;Ryu Keun-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.457-462
    • /
    • 2006
  • Sequential Pattern Mining is the mining approach which addresses the problem of discovering the existent maximal frequent sequences in a given databases. In the daily and scientific life, sequential data are available and used everywhere based on their representative forms as text, weather data, satellite data streams, business transactions, telecommunications records, experimental runs, DNA sequences, histories of medical records, etc. Discovering sequential patterns can assist user or scientist on predicting coming activities, interpreting recurring phenomena or extracting similarities. For the sake of that purpose, the core of sequential pattern mining is finding the frequent sequence which is contained frequently in all data sequences. Beside the discovery of frequent itemsets, sequential pattern mining requires the arrangement of those itemsets in sequences and the discovery of which of those are frequent. So before mining sequences, the main task is checking if one sequence is a subsequence of another sequence in the database. In this paper, we implement the subsequence matching method as the preprocessing step for sequential pattern mining. Matched sequences in our implementation are the normalized sequences as the form of number chain. The result which is given by this method is the review of matching information between input mapped sequences.

Bankruptcy Prediction Modeling Using Qualitative Information Based on Big Data Analytics (빅데이터 기반의 정성 정보를 활용한 부도 예측 모형 구축)

  • Jo, Nam-ok;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.33-56
    • /
    • 2016
  • Many researchers have focused on developing bankruptcy prediction models using modeling techniques, such as statistical methods including multiple discriminant analysis (MDA) and logit analysis or artificial intelligence techniques containing artificial neural networks (ANN), decision trees, and support vector machines (SVM), to secure enhanced performance. Most of the bankruptcy prediction models in academic studies have used financial ratios as main input variables. The bankruptcy of firms is associated with firm's financial states and the external economic situation. However, the inclusion of qualitative information, such as the economic atmosphere, has not been actively discussed despite the fact that exploiting only financial ratios has some drawbacks. Accounting information, such as financial ratios, is based on past data, and it is usually determined one year before bankruptcy. Thus, a time lag exists between the point of closing financial statements and the point of credit evaluation. In addition, financial ratios do not contain environmental factors, such as external economic situations. Therefore, using only financial ratios may be insufficient in constructing a bankruptcy prediction model, because they essentially reflect past corporate internal accounting information while neglecting recent information. Thus, qualitative information must be added to the conventional bankruptcy prediction model to supplement accounting information. Due to the lack of an analytic mechanism for obtaining and processing qualitative information from various information sources, previous studies have only used qualitative information. However, recently, big data analytics, such as text mining techniques, have been drawing much attention in academia and industry, with an increasing amount of unstructured text data available on the web. A few previous studies have sought to adopt big data analytics in business prediction modeling. Nevertheless, the use of qualitative information on the web for business prediction modeling is still deemed to be in the primary stage, restricted to limited applications, such as stock prediction and movie revenue prediction applications. Thus, it is necessary to apply big data analytics techniques, such as text mining, to various business prediction problems, including credit risk evaluation. Analytic methods are required for processing qualitative information represented in unstructured text form due to the complexity of managing and processing unstructured text data. This study proposes a bankruptcy prediction model for Korean small- and medium-sized construction firms using both quantitative information, such as financial ratios, and qualitative information acquired from economic news articles. The performance of the proposed method depends on how well information types are transformed from qualitative into quantitative information that is suitable for incorporating into the bankruptcy prediction model. We employ big data analytics techniques, especially text mining, as a mechanism for processing qualitative information. The sentiment index is provided at the industry level by extracting from a large amount of text data to quantify the external economic atmosphere represented in the media. The proposed method involves keyword-based sentiment analysis using a domain-specific sentiment lexicon to extract sentiment from economic news articles. The generated sentiment lexicon is designed to represent sentiment for the construction business by considering the relationship between the occurring term and the actual situation with respect to the economic condition of the industry rather than the inherent semantics of the term. The experimental results proved that incorporating qualitative information based on big data analytics into the traditional bankruptcy prediction model based on accounting information is effective for enhancing the predictive performance. The sentiment variable extracted from economic news articles had an impact on corporate bankruptcy. In particular, a negative sentiment variable improved the accuracy of corporate bankruptcy prediction because the corporate bankruptcy of construction firms is sensitive to poor economic conditions. The bankruptcy prediction model using qualitative information based on big data analytics contributes to the field, in that it reflects not only relatively recent information but also environmental factors, such as external economic conditions.

A Study on Fine-Tuning and Transfer Learning to Construct Binary Sentiment Classification Model in Korean Text (한글 텍스트 감정 이진 분류 모델 생성을 위한 미세 조정과 전이학습에 관한 연구)

  • JongSoo Kim
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.5
    • /
    • pp.15-30
    • /
    • 2023
  • Recently, generative models based on the Transformer architecture, such as ChatGPT, have been gaining significant attention. The Transformer architecture has been applied to various neural network models, including Google's BERT(Bidirectional Encoder Representations from Transformers) sentence generation model. In this paper, a method is proposed to create a text binary classification model for determining whether a comment on Korean movie review is positive or negative. To accomplish this, a pre-trained multilingual BERT sentence generation model is fine-tuned and transfer learned using a new Korean training dataset. To achieve this, a pre-trained BERT-Base model for multilingual sentence generation with 104 languages, 12 layers, 768 hidden, 12 attention heads, and 110M parameters is used. To change the pre-trained BERT-Base model into a text classification model, the input and output layers were fine-tuned, resulting in the creation of a new model with 178 million parameters. Using the fine-tuned model, with a maximum word count of 128, a batch size of 16, and 5 epochs, transfer learning is conducted with 10,000 training data and 5,000 testing data. A text sentiment binary classification model for Korean movie review with an accuracy of 0.9582, a loss of 0.1177, and an F1 score of 0.81 has been created. As a result of performing transfer learning with a dataset five times larger, a model with an accuracy of 0.9562, a loss of 0.1202, and an F1 score of 0.86 has been generated.

Development of Gesture-allowed Electronic Ink Editor (제스쳐 허용 전자 잉크 에디터의 개발)

  • 조미경;오암석
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.6
    • /
    • pp.1054-1061
    • /
    • 2003
  • Electronic ink is multimedia data that have emerged from the development of pen-based computers such as PDAs whose major input device is a stylus pen. Recently with the development and supply of pen-based mobile computers, the necessity of data processing techniques of electronic ink has increased. Techniques to develop a gesture-allowed text editor in electronic ink domain were studied in this paper. Gesture and electronic ink data are a promising feature of pen-based user interface, but they have not yet been fully exploited. A new gesture recognition algorithm to identify pen gestures and a segmentation method for electronic ink to execute gesture commands were proposed. An electronic ink editor, called GesEdit was developed using proposed algorithms. The gesture recognition algorithm is based on eight features of input strokes. Convex hull and input time have been used to segment electronic ink data into GC(Gesture Components) unit. A variety of experiments by ten people showed that the average recognition rate reached 99.6% for nine gestures.

  • PDF